13.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinAsinC+sin2C-sin2A=$\frac{1}{2}$sinBsinC,則sinA=( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{11}}}{4}$D.$\frac{{\sqrt{15}}}{4}$

分析 利用正弦定理以及余弦定理結(jié)合等比數(shù)列,求解A的余弦函數(shù),正弦函數(shù)值即可.

解答 解:由$sinAsinC+{sin^2}C-{sin^2}A=\frac{1}{2}sinBsinC$得$ac+{c^2}-{a^2}=\frac{1}{2}bc$,
由a,b,c成等比數(shù)列得ac=b2,即為${b^2}+{c^2}-{a^2}=\frac{1}{2}bc$,
所以$cosA=\frac{1}{4}$,即$sinA=\frac{{\sqrt{15}}}{4}$,
故選:D.

點評 本題考查正弦定理、余弦定理以及等比數(shù)列的知識,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求由曲線f(x)=-x2-2x+3與x軸圍成的封閉區(qū)域的面積.(注意:要求畫圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.實數(shù)m分別為何值時,復(fù)數(shù)z=2m2+m-3+(m2-3m-18)i是:
(1)實數(shù);
(2)虛數(shù);
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等邊三角形的邊長為a,它繞其一邊所在的直線旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的體積為$\frac{π{a}^{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.若命題¬p是真命題,則實數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知α是第一象限角,那么$\frac{α}{2}$是第一或三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).
(1)若△AMN的外接圓面積為S,求S的值;
(2)如何設(shè)計,使得工廠產(chǎn)生的噪聲對居民的影響最小(即工廠與村莊的距離最遠(yuǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,求證:$\sqrt{a+5}$-$\sqrt{a+3}$>$\sqrt{a+6}$-$\sqrt{a+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為$\frac{π}{4}$,N為棱SC上的動點,當(dāng)二面角S-BM-N為$\frac{π}{4}$時,求$\frac{SN}{NC}$的值.

查看答案和解析>>

同步練習(xí)冊答案