15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上為減函數(shù),則實(shí)數(shù)a的取值范圍為[$\frac{1}{4}$,$\frac{1}{2}$).

分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上為減函數(shù),則$\left\{\begin{array}{l}a-\frac{1}{2}<0\\ 0<a<\frac{1}{2}\\ a-\frac{1}{2}-2a+1≤a\end{array}\right.$,解得數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x-2a+1,x≥1}\\{{a}^{x},x<1}\end{array}\right.$,在R上為減函數(shù),
$\left\{\begin{array}{l}a-\frac{1}{2}<0\\ 0<a<\frac{1}{2}\\ a-\frac{1}{2}-2a+1≤a\end{array}\right.$,
解得:a∈[$\frac{1}{4}$,$\frac{1}{2}$),
故答案為:[$\frac{1}{4}$,$\frac{1}{2}$)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,正確理解分段函數(shù)單調(diào)性的意義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知冪函數(shù)f(x)=(a2-9a+19)x2a-9的圖象恒不過原點(diǎn),則實(shí)數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={1,2,3,4,5}.集合A={1,2,3},B={2,4,5},那么)(CUA)∩(CUB)是( 。
A.B.{4}C.{1,3}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某商店預(yù)備在一個(gè)月內(nèi)分批購(gòu)入每張價(jià)值為20元的書桌共36臺(tái),每批都購(gòu)入x臺(tái)(x是正整數(shù)),且每批均需付運(yùn)費(fèi)4元,儲(chǔ)存購(gòu)入的書桌一個(gè)月所付的保管費(fèi)與每批購(gòu)入書桌的總價(jià)值(不含運(yùn)費(fèi))成正比,若每批購(gòu)入4臺(tái),則該月需用去運(yùn)費(fèi)和保管費(fèi)共52元,現(xiàn)在全月只有48元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.
(3)要使該月用于支付運(yùn)費(fèi)和保管費(fèi)的資金費(fèi)用最少,每批進(jìn)貨的數(shù)量應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x3(ax+m•a-x)(x∈R,a>0)且a≠1)是偶函數(shù),則實(shí)數(shù)m的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.2loga(M-2N)=logaM+logaN,則$\frac{M}{N}$的值為( 。
A.$\frac{1}{4}$B.4C.1D.4或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若函數(shù)f(x)不是常函數(shù),且對(duì)任意的a,b∈R,有f(a+b)+f(a-b)=2f(a)f(b)成立.
(1)求f(0)的值;
(2)求證:f(x)為偶函數(shù);
(3)求證:若f(2)=1,f(1)≠1,則對(duì)任意的x∈R有f(x+1)=-f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列關(guān)于命題的說法錯(cuò)誤的是( 。
A.若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n≤1000
B.命題“若x2-3x+2=0,則x=1”,逆否命題為“若x≠1,則x2-3x+2≠0”;
C.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件;
D.命題“?x∈(-∞,0),2x<3x”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C1:x2+y2=r2與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)于x軸的交點(diǎn)重合,且橢圓C2的離心率為$\frac{\sqrt{2}}{2}$,圓C1上的點(diǎn)到直線l:x=-2$\sqrt{2}$的最短距離為2$\sqrt{2}$-2.
(1)求橢圓C2的方程;
(2)如圖過直線1上的動(dòng)點(diǎn)T作圓C1的兩條切線,設(shè)切點(diǎn)分別為A、B,若直線AB與橢圓C2交于不同的兩點(diǎn)C、D,求△OCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案