分析 設(shè)箱底邊長為x,根據(jù)已知中箱子的制作方法,我們可求出容積V(x)的解析式,求出其導(dǎo)函數(shù),分析其單調(diào)性,可得到函數(shù)的最值點(diǎn),代入可得答案.
解答 解:設(shè)箱底邊長為x,則箱高為h=$\frac{\sqrt{3}}{3}$×$\frac{60-x}{2}$(0<x<60),…(2分)
箱子的容積為V(x)=$\frac{1}{2}{x}^{2}sin60°h$=$\frac{15}{2}{x}^{2}$-$\frac{1}{8}{x}^{3}$(0<x<60). …(6分)
由V′(x)=0解得x=0(舍),x=40,…(8分)
且當(dāng)x∈(0,40)時(shí),V′(x)>0;當(dāng)x∈(40,60)時(shí),V′(x)<0,
所以函數(shù)V(x)在x=40處取得極大值,…(10分)
這個(gè)極大值就是函數(shù)V(x)的最大值:V(40)=4000.…(12分)
答:當(dāng)箱子底邊長為40cm時(shí),高為10cm時(shí),箱子容積最大,最大值為4000cm3. …(14分
點(diǎn)評 本題考查的知識點(diǎn)是棱柱的體積,導(dǎo)數(shù)法求最值,其中根據(jù)已知求出容積V(x)的解析式,是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥$\frac{3}{4}$或k≤-4 | B. | k≥$\frac{3}{4}或k≤-\frac{1}{4}$ | C. | -4≤k≤$\frac{3}{4}$ | D. | $\frac{3}{4}$≤k≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com