6.已知四棱錐P-ABCD中,AD=2BC,且AD∥BC,點M,N分別是PB,PD中點,平面MNC交PA于Q.
(1)證明:NC∥平面PAB
(2)試確定Q點的位置,并證明你的結(jié)論.

分析 (1)取PA中點E,連結(jié)EN,BE,則可證四邊形BCNE是平行四邊形,故CN∥BE,從而CN∥平面PAB;
(2)取PE的中點Q,連結(jié)MQ,NQ,則MQ∥BE∥CN,故Q∈平面MCN,即Q是PA的一個四等分點.

解答 解:(1)取PA中點E,連結(jié)EN,BE,
∵E是PA的中點,N是PD的中點,∴EN=$\frac{1}{2}$AD,EN∥AD,
又∵BC=$\frac{1}{2}AD$,BC∥AD,∴EN∥BC,EN=BC,
∴四邊形BCNE是平行四邊形.
∴CN∥BE,又∵BE?平面ABP,CN?平面ABP,
∴NC∥平面PAB.
(2)Q是PA的一個四等分點,且PQ=$\frac{1}{4}$PA.
證明如下:取PE的中點Q,連結(jié)MQ,NQ,
∵M是PB的中點,∴MQ∥BE,
又∵CN∥BE,∴MQ∥CN,∴Q∈平面MCN,
又∵Q∈PA,∴PA∩平面MCN=Q,
∴PQ=$\frac{1}{2}$PE=$\frac{1}{4}$PA,
∴Q是PA的靠近P的一個四等分點.

點評 本題考查了線面平行的判定及平面的性質(zhì),構(gòu)造平行四邊形是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實數(shù)1,m,9構(gòu)成一個等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的焦距為( 。
A.4B.2$\sqrt{2}$C.$\sqrt{2}$或2D.2$\sqrt{2}$或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知變量x、y滿足約束條件$\left\{\begin{array}{l}{|x|≤y}\\{x+2y-1≤0}\end{array}\right.$,則目標函數(shù)z=2x-y的最小值為(  )
A.-3B.$\frac{1}{3}$C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)y=sinx在區(qū)間$[t,t+\frac{π}{2}]$上的最大值為M(t),最小值為m(t),則M(t)-m(t)的最小值和最大值分別為( 。
A.1,2B.$1,\sqrt{2}$C.$1-\frac{{\sqrt{2}}}{2},1$D.$1-\frac{{\sqrt{2}}}{2},\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
(1)AC⊥BD           (2)AB與平面BCD成60°的角
(3)△ACD是等邊三角形 (4)AB與CD所成的角為60°
正確結(jié)論的編號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)判斷f(x)在[1,+∞)的單調(diào)性,并證明你的結(jié)論;
(2)求函數(shù)在$[{\frac{1}{2},2}]$上最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(1,k),$\overrightarrow$=(0,2),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α,β為銳角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,則α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.要得到函數(shù)$y=cos(4x-\frac{π}{4})$的圖象,只需將函數(shù)y=cos4x的圖象( 。
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{16}$個單位D.向右平移$\frac{π}{16}$個單位

查看答案和解析>>

同步練習冊答案