16.在拋物線y=x2+ax-5(a≠0)上取橫坐標(biāo)為x1=-4,x2=2的兩點(diǎn)A,B,過(guò)這兩點(diǎn)引一條割線,拋物線在點(diǎn)Q平行于該割線的一條切線同時(shí)與圓5x2+5y2=36相切
(1)求切點(diǎn)Q的橫坐標(biāo)       
(2)求切線和坐標(biāo)軸所圍三角形面積.

分析 (1)求出兩個(gè)點(diǎn)的坐標(biāo),利用兩點(diǎn)連線的斜率公式求出割線的斜率;利用導(dǎo)數(shù)在切點(diǎn)處的值為切線的斜率求出切點(diǎn)坐標(biāo);
(2)利用直線方程的點(diǎn)斜式求出直線方程;利用直線與圓相切的條件求出a,可得切線方程,即可求切線和坐標(biāo)軸所圍三角形面積.

解答 解:(1)兩點(diǎn)坐標(biāo)為(-4,11-4a);(2,2a-1)
兩點(diǎn)連線的斜率k=a-2,
對(duì)于y=x2+ax-5,y′=2x+a
∴2x+a=a-2,解得x=-1,
∴切點(diǎn)Q的橫坐標(biāo)為-1;
(2)在拋物線上的切點(diǎn)為(-1,-a-4)
切線方程為(a-2)x-y-6=0
直線與圓相切,圓心(0,0)到直線的距離=圓半徑,即$\frac{6}{\sqrt{(a-2)^{2}+1}}$=$\frac{6}{\sqrt{5}}$
解得a=4或0(0舍去)
所以切線方程為2x-y-6=0
與坐標(biāo)軸的交點(diǎn)坐標(biāo)為(0,-6)(3,0)
∴所圍三角形面積為$\frac{1}{2}×6×3$=9.

點(diǎn)評(píng) 本題考查兩點(diǎn)連線的斜率公式、考查導(dǎo)數(shù)在切點(diǎn)處的值為切線的斜率、考查直線與圓相切的充要條件是圓心到直線的距離等于半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,|$\overrightarrow{a}$+$\overrightarrow$|=4,則$\overrightarrow{a}$-$\overrightarrow$=( 。
A.$\sqrt{10}$B.10C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)A(x1,y1),B(x2,y2),M(1,0),$\overrightarrow{AB}$=(3λ,4λ)(λ≠0),$\overrightarrow{MA}$=-4$\overrightarrow{MB}$,若拋物線y2=ax經(jīng)過(guò)A和B兩點(diǎn),則a的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知f(x)=x3+ln$\frac{1+x}{1-x}$,且f(3a-2)+f(a-1)<0,則實(shí)數(shù)a的取值范圍是($\frac{1}{3}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(Ⅰ)從{-3,-2,-1,0,1,2,3,4}中任選三個(gè)不同元素作為二次函數(shù)y=ax2+bx+c的系數(shù),問(wèn)能組成多少條經(jīng)過(guò)原點(diǎn)且頂點(diǎn)在第一象限或第三象限的拋物線?
(Ⅱ)已知($\frac{1}{2}$+2x)n,若展開(kāi)式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)$f(x)=lnx與函數(shù)g(x)=\frac{2}{x}$的交點(diǎn)的橫坐標(biāo)所在的大致區(qū)間是( 。
A.(1,2)B.(2,3)C.$({1,\frac{1}{e}})$D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若數(shù)列{an}為等差數(shù)列,且am=x,an=y(m≠n),則am+n=$\frac{mx-ny}{m-n}$.現(xiàn)已知數(shù)列{bn}是各項(xiàng)均大于0的等比數(shù)列,且bm=x,bn=y(m≠n),則類比等差數(shù)列,你能得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{3}sin2x+cos2x+3$.
(Ⅰ)求f(x)的最小正周期與單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若$a=\sqrt{3}$,f(A)=4,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知cosα+cosβ=$\frac{1}{2}$,則cos$\frac{α+β}{2}$cos$\frac{α-β}{2}$的值為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案