【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時(shí),求的最小值.
【答案】(1)(2)2
【解析】試題分析:(1)本問考查極坐標(biāo)與直角坐標(biāo)互化公式,根據(jù)可得,所以曲線C的直角坐標(biāo)方程為 ;(2)本問考查直線參數(shù)方程標(biāo)準(zhǔn)形式下的幾何意義,即將直線參數(shù)方程的標(biāo)準(zhǔn)形式,代入到曲線C的直角坐標(biāo)方程,得到關(guān)于t的一元二次方程,設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,列出, , ,于是可以求出的最小值.
試題解析:(I)由由,得
曲線 的直角坐標(biāo)方程為
(II)將直線的參數(shù)方程代入,得
設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為則, ,
當(dāng)時(shí), 的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時(shí)間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價(jià)m(元/件) | 當(dāng)1≤x≤20時(shí),m=20+ x |
當(dāng)21≤x≤30時(shí),m=10+ |
(1)請(qǐng)計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的最小值;
(2)當(dāng)時(shí),若對(duì),,使得成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)(),記的導(dǎo)函數(shù)為.
(1)證明:當(dāng)時(shí),在上單調(diào)遞增;
(2)若在處取得極小值,求的取值范圍;
(3)設(shè)函數(shù)的定義域?yàn)?/span>,區(qū)間,若在上是單調(diào)函數(shù),
則稱在上廣義單調(diào).試證明函數(shù)在上廣義單調(diào).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com