【題目】已知等比數(shù)列是遞增數(shù)列,其前項和為,且.
(1)求數(shù)列的通項公式;
(2)設 ,求數(shù)列 的前項和.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)題意列出關于首項 ,公比 的方程組,解得、的值,即可數(shù)列的通項公式;(2)由(1)可得,利用錯位相減法求和即可得結果.
試題解析:(1)設的公比為 ,
由已知得
解得
又因為數(shù)列為遞增數(shù)列
所以,
∴
(2)
【 方法點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側面
底面,且, 、分別為、的中點.
(1)求證: 平面;
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設直線與曲線相交于, 兩點,當變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交 于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三文科500名學生參加了5月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取100名學生的成績進行統(tǒng)計分析,抽出的100名學生的數(shù)學、語文成績如下表:
(1)將學生編號為:001,002,003,……,499,500.若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的5個人的編號(下面是摘自隨機數(shù)表的第4行至第7行)
(2)若數(shù)學的優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱己玫膶W生中,已知,求數(shù)學成績“優(yōu)”比“良”的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}是等差數(shù)列,前n項和為Sn , {bn}是單調遞增的等比數(shù)列,b1=2是a1與a2的等差中項,a3=5,b3=a4+1,若當n≥m時,Sn≤bn恒成立,則m的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com