【題目】

已知函數(shù)),記的導函數(shù)為

(1)證明:當時,上單調(diào)遞增;

(2)若處取得極小值,求的取值范圍;

(3)設函數(shù)的定義域為,區(qū)間,若上是單調(diào)函數(shù),

則稱上廣義單調(diào).試證明函數(shù)上廣義單調(diào).

【答案】(1) 詳見解析;(2) ;(3) 詳見解析.

【解析】(1)試題分析:(1)時,,

所以,即, 所以,

所以上單調(diào)遞增(2)因為,所以.① 當時,,所以函數(shù)上單調(diào)遞增.

,則;若,則

所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

所以處取得極小值,符合題意. ② 當時,,所以函數(shù)上單調(diào)遞減.若,則;若,則,所以的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是,所以處取得極大值,不符合題意. ③ 當時,,使得,即,但當時,,即,所以函數(shù)上單調(diào)遞減,所以,即函數(shù)單調(diào)遞減,不符合題意.(3)記),

① 若,注意到,則,即. 當時,.所以,函數(shù)上單調(diào)遞增.

② 若,當x>1時,<0.

所以,函數(shù)上單調(diào)遞減,

試題解析:

(1)當時,,

所以,即, 所以,

所以上單調(diào)遞增.

(2)因為,所以

① 當時,,所以函數(shù)上單調(diào)遞增.

,則;若,則,

所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,

所以處取得極小值,符合題意.

② 當時,,所以函數(shù)上單調(diào)遞減.

,則;若,則,

所以的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是,

所以處取得極大值,不符合題意.

③ 當時,,使得,即

但當時,,即

所以函數(shù)上單調(diào)遞減,所以,

即函數(shù)單調(diào)遞減,不符合題意.

綜上所述,的取值范圍是

(3)記),

① 若,注意到,則,即

時,

所以,函數(shù)上單調(diào)遞增.

② 若,當x>1時,<0.

所以,函數(shù)上單調(diào)遞減,

綜上所述,函數(shù)在區(qū)間上廣義單調(diào).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進一步的統(tǒng)計分析,發(fā)現(xiàn)具有線性相關關系.

(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程

(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為,抽到三等獎(價值10元獎品)的概率為,試估計該分店在此次抽獎活動結束時送出多少元獎品?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設直線與曲線相交于 兩點,當變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三文科500名學生參加了5月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取100名學生的成績進行統(tǒng)計分析,抽出的100名學生的數(shù)學、語文成績?nèi)缦卤恚?/span>

(1)將學生編號為:001,002,003,……,499,500.若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的5個人的編號(下面是摘自隨機數(shù)表的第4行至第7行)

(2)若數(shù)學的優(yōu)秀率為,求的值;

(3)在語文成績?yōu)榱己玫膶W生中,已知,求數(shù)學成績“優(yōu)”比“良”的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=a,其前n項和為Sn , 且滿足Sn+Sn1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是(
A.( ,
B.( ,
C.( ,
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}是等差數(shù)列,前n項和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項,a3=5,b3=a4+1,若當n≥m時,Sn≤bn恒成立,則m的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象(
A.向左平移1個單位
B.向右平移1個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計結果如表:

(Ⅰ)求甲流水線樣本合格的頻率;

(Ⅱ)從乙流水線上重量值落在內(nèi)的產(chǎn)品中任取2個產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.

查看答案和解析>>

同步練習冊答案