分析 (1)由a1=1,3Sn2+an+1(3Sn+1)=0,an+1=Sn+1-Sn.代入變形化為$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=3,利用等差數(shù)列的通項(xiàng)公式可得:Sn.利用an=Sn-Sn-1即可得出.
(2)由Sn=(3n+1)bn,可得bn=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂項(xiàng)求和”即可得出.
解答 解:(1)∵a1=1,3Sn2+an+1(3Sn+1)=0,an+1=Sn+1-Sn.
∴3Sn2+(Sn+1-Sn)(3Sn+1)=0,
化為$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=3,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,首項(xiàng)為1,公差為3.
∴$\frac{1}{{S}_{n}}$=1+3(n-1)=3n-2,
∴Sn=$\frac{1}{3n-2}$,
∴an=Sn-Sn-1=$\frac{1}{3n-2}-\frac{1}{3n-5}$.
(2)∵Sn=(3n+1)bn,
∴bn=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{3}[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com