16.已知A={x|$\frac{2}{x}$>1},B={x|log2(x-1)<1},則A∩B={x|1<x<2}.

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:集合A中不等式,當x>0時,解得:x<2,此時0<x<2;
當x<0時,解得:x>2,無解,
∴A={x|0<x<2},
集合B中不等式變形得:log2(x-1)<1=log22,即0<x-1<2,
解得:1<x<3,即B={x|1<x<3},
則A∩B={x|1<x<2},
故答案為:{x|1<x<2}.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,底面ABCD是矩形,AB=2AD,PD⊥底面ABCD,E,F(xiàn)分別為棱AB,PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:平面PDE⊥平面PEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設集合A={(m1,m2,m3)|mi∈{-2,0,2},i∈{1,2,3}},則集合A滿足條件:“2≤|m1|+|m2|+|m3|≤5”的元素個數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若sinα=$\frac{4}{5}$,且α是第二象限的角,則cot($\frac{π}{4}$-$\frac{α}{2}$)=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,A=$\frac{π}{3}$,|$\overrightarrow{AC}$|=m,m∈[1,2],若對于任意實數(shù)t恒有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|,則△ABC面積的最大值是( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知空間四邊形ABCD中,AB=AD,CB=CD,E是BD的中點,求證:BD⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在數(shù)列{an}中,an=n(sin$\frac{nπ}{2}$+cos$\frac{nπ}{2}$),前n項和為Sn,則S100=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.i是虛數(shù)單位,復數(shù)z滿足$\frac{z-3i}{4i}$=i,則|z|=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若數(shù)列{an}的通項公式為an=4•3-n(n∈N*),則這個數(shù)列是一個( 。
A.以4為首項,3為公比的等比數(shù)列B.以4為首項,$\frac{1}{3}$為公比的等比數(shù)列
C.以$\frac{4}{3}$為首項,3為公比的等比數(shù)列D.以$\frac{4}{3}$為首項,$\frac{1}{3}$為公比的等比數(shù)列

查看答案和解析>>

同步練習冊答案