4.已知半徑為$\frac{2\sqrt{3}}{3}$的球內(nèi)接一個圓錐,圓錐的軸截面SAB是等邊三角形,O1為圓錐底面直徑AB的中點,O為球心,動點P在圓錐底面內(nèi)(包括圓周)運動,若AO⊥OP,則點P形成的軌跡的長度為$\frac{4\sqrt{2}}{3}$.

分析 建立空間直角坐標(biāo)系,寫出點的坐標(biāo),設(shè)出動點的坐標(biāo),利用向量的坐標(biāo)公式求出向量坐標(biāo),利用向量垂直的充要條件列出方程求出動點P的軌跡方程,得到P的軌跡是底面圓的弦,利用勾股定理求出弦長.

解答 解:半徑為$\frac{2\sqrt{3}}{3}$的球內(nèi)接一個圓錐,圓錐的軸截面SAB是等邊三角形,邊長為2,建立空間直角坐標(biāo)系.設(shè)A(0,-1,0),B(0,1,0),S(0,0,$\sqrt{3}$),O(0,0,$\frac{\sqrt{3}}{3}$),P(x,y,0).
于是有$\overrightarrow{AO}$=(0,1,$\frac{\sqrt{3}}{3}$),$\overrightarrow{OP}$=(x,y,-$\frac{\sqrt{3}}{3}$)
由于AO⊥OP,所以(0,1,$\frac{\sqrt{3}}{3}$)•(x,y,-$\frac{\sqrt{3}}{3}$)=0,
即y=$\frac{1}{3}$,此為P點形成的軌跡方程,其在底面圓盤內(nèi)的長度為2$\sqrt{1-\frac{1}{9}}$=$\frac{4\sqrt{2}}{3}$. 
故答案為:$\frac{4\sqrt{2}}{3}$.

點評 本題考查通過建立坐標(biāo)系,將求軌跡問題轉(zhuǎn)化為求軌跡方程、考查向量的數(shù)量積公式、向量垂直的充要條件、圓的弦長的求法.屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有以下結(jié)論:①函數(shù)y=log2(1-x)的增區(qū)間是(-∞,1);②若冪函數(shù)y=f(x)的圖象經(jīng)過點(2,$\sqrt{2}$),則該函數(shù)為偶函數(shù);③函數(shù)y=3|x|的值域是[1,+∞);④若函數(shù)y=f(x)為單調(diào)增函數(shù),則函數(shù)$y=\frac{1}{f(x)}$為減函數(shù).
其中正確結(jié)論的序號是③.(把所有正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在棱長為2的正方體ABCD-A′B′C′D′中,點E,F(xiàn)分別是棱BC,CD上的動點.
(1)當(dāng)BE=CF時,求證:B′F⊥D′E;
(2)若點E為BC的中點,在棱CD上是否存在點F,使二面角C′-EF-C的余弦值為$\frac{1}{3}$?若存在,請確定點F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖為某幾何體的三視圖,則其體積為( 。
A.$\frac{2π}{3}+4$B.$\frac{2π+4}{3}$C.$\frac{π}{3}+4$D.$π+\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖(如圖),其中俯視圖和側(cè)(左)視圖都是腰長為4的等腰直角三角形,正(主)視圖為直角梯形,則此幾何體的體積V的大小為(  )
A.$\frac{35}{3}$B.12C.16D.$\frac{40}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知某幾何體的三視圖如圖所示,則此幾何體的體積是$\frac{2}{3}$;  表面積是$3+\sqrt{2}+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.P是長、寬、高分別為12,3,4的長方形外接球表面上一動點,設(shè)P到長方體各個面所在平面的距離為d,則d的取值范圍是[0,$\frac{25}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C與直線l交于點A、B,若點P的坐標(biāo)為(1,1),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在長為10cm的線段AB上任取一點M,并以線段AM為邊作正方形,則這個正方形的面積介于36cm2到81cm2的概率為$\frac{3}{10}$.

查看答案和解析>>

同步練習(xí)冊答案