分析 利用cos2φ+sin2φ=1,可把曲線C的參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ為參數(shù)),消去參數(shù)化為普通方程.直線l的極坐標(biāo)方程為ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$,展開利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$化為直角坐標(biāo)方程.可得直線l的參數(shù)方程:$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t為參數(shù)),代入橢圓方程,利用|PA|•|PB|=-t1t2即可得出.
解答 解:曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ為參數(shù)),消去參數(shù)化為普通方程:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{15}=1$.
直線l的極坐標(biāo)方程為ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$,展開化為:$2(\frac{\sqrt{3}}{2}ρcosθ+\frac{1}{2}sinθ)$=$\sqrt{3}$,∴直角坐標(biāo)方程:$\sqrt{3}x+y=\sqrt{3}$,
可得直線l的參數(shù)方程:$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t為參數(shù))
代入橢圓方程可得:2t2+3t-12=0,
∴|PA|•|PB|=-t1t2=6.
故答案為:6.
點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、橢圓的參數(shù)方程、直線的參數(shù)方程及其應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
班級 | 一 | 二 | 三 | 四 |
人數(shù) | 1 | 2 | 3 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com