5.過平面外一點,可以作這個平面的平行線的條數(shù)是( 。
A.1條B.2條C.超過2條但有限D.無數(shù)條

分析 利用平面與平面平行的性質定理即可得出結論是無數(shù)條.

解答 解:過平面外一點作該平面的平行平面,有且只有1個,
在這個平行平面上過這個點的直線有無數(shù)條,這些直線都與原平面平行.
故選:D.

點評 本題考查了空間直線與平面平行的判定與性質的應用問題,是基本題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)y=$\sqrt{3}$cos($\frac{3π}{2}$+2x)+cos2x-sin2x,當x取何值時,y取得最大值和函數(shù)的對稱中心?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若f(x)+2f($\frac{1}{x}$)=3x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.計算;
(1)7$\root{3}{3}$-3$\root{3}{24}$一6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$ 
(2)(0.0081)${\;}^{-\frac{1}{4}}$一[3×($\frac{7}{8}$)0]-1×[81-0.25+($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow a$=(cos(x+$\frac{π}{8}$),sin2(x+$\frac{π}{8}$)),$\overrightarrow b$=(sin(x+$\frac{π}{8}$),1),函數(shù)f(x)=1-2$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的解析式和最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)若方程f(x)+2m=0在[$\frac{π}{4}$,$\frac{7π}{8}$]有兩個實根,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,設A是棱長為2的正方體的一個頂點,過從頂點A出發(fā)的三條棱的中點作截面,對正方體的所有頂點都如此操作,截去8個三棱錐,所得的各截面與正方體各面共同圍成一個多面體,則關于此多面體有以下結論:
①有24個頂點;②有36條棱;③有14個面;④表面積為12;⑤體積為$\frac{20}{3}$.
正確的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在平面直角坐標系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點,
(1)若點A的橫坐標是$\frac{3}{5}$,點B的縱坐標是$\frac{12}{13}$,求sin(α+β)的值;
(2)若|AB|=$\frac{3}{2}$,求cos(β-α)的值;
(3)已知點C(-1,3 ),求函數(shù)f(α)=$\overrightarrow{OA}•\overrightarrow{OC}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.與雙曲線$\frac{y^2}{4}-{x^2}$=1有共同的漸近線,且過點(2,2)的雙曲線標準方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{12}=1$B.$\frac{x^2}{3}-\frac{y^2}{12}=1$C.$\frac{y^2}{2}-\frac{x^2}{8}=1$D.$\frac{x^2}{2}-\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9有2條公切線.

查看答案和解析>>

同步練習冊答案