14.與雙曲線$\frac{y^2}{4}-{x^2}$=1有共同的漸近線,且過點(diǎn)(2,2)的雙曲線標(biāo)準(zhǔn)方程為(  )
A.$\frac{y^2}{3}-\frac{x^2}{12}=1$B.$\frac{x^2}{3}-\frac{y^2}{12}=1$C.$\frac{y^2}{2}-\frac{x^2}{8}=1$D.$\frac{x^2}{2}-\frac{y^2}{8}=1$

分析 由題意設(shè)出與雙曲線$\frac{y^2}{4}-{x^2}=1$有共同的漸近線的方程為$\frac{y^2}{4}-{x^2}=λ$,把點(diǎn)(2,2)代入求出λ,則答案可求.

解答 解:設(shè)所求的雙曲線方程為$\frac{y^2}{4}-{x^2}=λ$,
∵所求雙曲線過點(diǎn)(2,2),則$\frac{{2}^{2}}{4}-{2}^{2}=λ$,即λ=-3,
∴所求雙曲線方程為$\frac{x^2}{3}-\frac{y^2}{12}=1$.
故選:B.

點(diǎn)評(píng) 本小題主要考查雙曲線標(biāo)準(zhǔn)方程的求解,考查學(xué)生的運(yùn)算求解能力.設(shè)與雙曲線$\frac{y^2}{4}-{x^2}=1$有共同的漸近線的方程為$\frac{y^2}{4}-{x^2}=λ$是簡(jiǎn)化運(yùn)算的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定義域?yàn)锳,函數(shù)g(x)=($\frac{1}{2}$)x(-1≤x≤0)的值域?yàn)锽.
(1)求A∩B;
(2)若C={y|y≤a-1},且B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過平面外一點(diǎn),可以作這個(gè)平面的平行線的條數(shù)是(  )
A.1條B.2條C.超過2條但有限D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合M=$\{x|y={x^{\frac{1}{2}}}\},N=\{x|-1>2-3x≤5\}$,U=R,則圖中陰影部分表示的集合是[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow$=(sin20°,cos20°),則$\overrightarrow{a}$•$\overrightarrow$等于( 。
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n和為Sn,滿足Sn=an+1+n2-3,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,則(a0+a2+a4)(a1+a3+a5)的值等于( 。
A.16B.-32C.256D.-256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集$U=\left\{{({x,y})\left|{y=x+1,x,y∈R}\right.}\right\},M=\left\{{({x,y})\left|{\frac{y-3}{x-2}=1}\right.}\right\}$,則∁UM=( 。
A.B.{(2,3)}C.(2,3)D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.f(x)是偶函數(shù)且在[0,+∞)上是減函數(shù),且f(log2x)>f(1),則x的取值范圍是( 。
A.($\frac{1}{2}$,1)B.(0,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2}$,2)D.(0,1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案