4.在空間直角坐標系O-xyz中,點M(1,-1,2)關于平面xOy對稱的點的坐標為(1,-1,-2).

分析 根據(jù)關于平面xoy對稱的點的規(guī)律:橫坐標、縱坐標保持不變,豎坐標變?yōu)樗南喾磾?shù),即可求得答案.

解答 解:由題意,關于平面xoy對稱的點橫坐標、縱坐標保持不變,豎坐標變?yōu)樗南喾磾?shù),
從而有點M(1,-1,2)關于平面xoy對稱的點的坐標為(1,-1,-2)
故答案為:(1,-1,-2).

點評 本題考查點關于平面xOy對稱的點的坐標的求法,是基礎題,解題時要認真審題,注意對稱性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知寒素f(x)=3x2-2mx-1(m∈R).
(1)若函數(shù)f(x)在區(qū)間(1,2)上是單調函數(shù),求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[0,1]上的最小值為g(m),求g(m)的表達式;
(3)已知h(x)為奇函數(shù),當x≥0時,h(x)=f(x)+2mx+1,若h(2x-3)≤h(x+cosθ)對θ∈R恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點為F1、F2,P是雙曲線上的一點(P不在x軸上),△PF1F2的內切圓與x軸切與點A,且A到該雙曲線漸近線的距離為$\frac{3}$,則雙曲線的離心率為( 。
A.2B.3C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知拋物線y2=2px(p>0)的焦點為F,點P是拋物線上的一點,且其縱坐標為4,|PF|=4.
(1)求拋物線的方程;
(2)設點A(x1,y1),B(x2,y2),(yi≤0,i=1,2)是拋物線上的兩點,∠APB的角平分線與x軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線AB過點(1,-1),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某高校自主招生,發(fā)送面試通知書,將考生編號為1,2,3…n的n封面試通知書裝入編號為1,2,3,…,n的n只信封中,調查表明恰好裝錯3只信封的概率為$\frac{1}{6}$
(1)確定n的值;
(2)寫出裝錯信封的件數(shù)ξ的概率分布,并求其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等邊△ABC的邊長為8$\sqrt{3}$,且三個頂點都在拋物線y2=4mx(m>0)上,拋物線的準線與x軸交于點M,自M引直線交拋物線于P、Q兩個不同的點,設$\overrightarrow{MP}$=λ$\overrightarrow{MQ}$
(1)求拋物線的方程;
(2)若λ∈[$\frac{1}{2}$,1),求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{lo{g}_{2}x-1}{2lo{g}_{2}x+1}$(x>2),已知f(x1)+f(x2)=$\frac{1}{2}$,則f(x1x2)的最小值=$\frac{4}{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,則二項式(x2+x+y)a展開式中x5y2項的系數(shù)為( 。
A.120B.80C.60D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設點O為△ABC內的一點,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$,則點O是△ABC的垂心.

查看答案和解析>>

同步練習冊答案