13.設(shè)a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,則二項(xiàng)式(x2+x+y)a展開式中x5y2項(xiàng)的系數(shù)為( 。
A.120B.80C.60D.50

分析 利用微積分基本定理可得a=6,再利用展開式的通項(xiàng)公式即可得出.

解答 解:a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx=-3sinx${|}_{\frac{π}{2}}^{\frac{3π}{2}}$=-3(-1-1)=6
∴二項(xiàng)式(x2+x+y)6展開式通項(xiàng)公式Tr+1=${C}_{6}^{r}$y6-r(x2+x)r,
令r=4,(x2+x)4通項(xiàng)公式${C}_{4}^{r′}{x}^{8-3r′}$.
令8-3r′=5,r′=1,
∴二項(xiàng)式(x2+x+y)a展開式中x5y2項(xiàng)的系數(shù)為15×4=60.
故選:C.

點(diǎn)評 本題考查了微積分基本定理、二項(xiàng)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(-1,$\frac{1}{2}$),若$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直,求實(shí)數(shù)λ;
(Ⅱ)已知平行四邊形ABCD的對角線AC和BD相交于O,且$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用向量$\overrightarrow{a}$,$\overrightarrow$分別表示向量$\overrightarrow{OC}$,$\overrightarrow{OD}$,$\overrightarrow{DC}$,$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在空間直角坐標(biāo)系O-xyz中,點(diǎn)M(1,-1,2)關(guān)于平面xOy對稱的點(diǎn)的坐標(biāo)為(1,-1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知隨機(jī)變量X的分布列為:.
X 1 2 3 4
 P 0.1 0.2 0.4 0.20.1
若Y=2X-3,則P(1<Y≤5)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.10名學(xué)生參加數(shù)學(xué)競賽,分別獲得第一名與第六名各一人,則不同獲獎的種數(shù)為( 。
A.${A}_{10}^{2}$種B.${C}_{10}^{2}$種C.10${C}_{10}^{1}$種D.10${A}_{10}^{2}$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果存在區(qū)間[a,b]⊆D,使得f(x)在區(qū)間[a,b]上的值域仍為[a,b],那么函數(shù)f(x)叫做保值函數(shù),若函數(shù)g(x)=k+$\sqrt{x+2}$為保值函數(shù),則實(shí)數(shù)k的取值范圍為$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系中,若點(diǎn)(1,1)的坐標(biāo)滿足線性約束條件:$\left\{\begin{array}{l}{ax+by≤2}\\{by-ax≤2}\\{ay≥1}\end{array}\right.$,則$\frac{a}$的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知cos(2016π+α)=-$\frac{1}{5}$,那么cos2α=-$\frac{23}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在Rt△ABC中,∠C=90°,BC=2,M是AB的中點(diǎn),則$\overrightarrow{CM}$•$\overrightarrow{CB}$=2.

查看答案和解析>>

同步練習(xí)冊答案