已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
1
2
,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:mx+y+1=0與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使|
OA
+
OB
|=|
OA
-
OB
||成立?若存在,求m的值;若不存在,請說明理由.
考點(diǎn):橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)根據(jù)離心率為
1
2
,右焦點(diǎn)到右頂點(diǎn)的距離為1,可得
e=
c
a
=
1
2
a-c=1.
,即可求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)依題意,若|
OA
+
OB
|=|
OA
-
OB
|
,平方得
OA
OB
=0
.把y=-mx-1代入橢圓C:3x2+4y2=12中,整理得(3+4m2)x2+8mx-8=0,利用韋達(dá)定理,即可得出結(jié)論.
解答: 解:(Ⅰ)設(shè)橢圓C的方程為
x2
a2
+
y2
b2
=1
(a>b>0),半焦距為c.
依題意
e=
c
a
=
1
2
a-c=1.
解得c=1,a=2,所以b2=a2-c2=3.
所以橢圓C的標(biāo)準(zhǔn)方程是
x2
4
+
y2
3
=1

(Ⅱ)不存在實(shí)數(shù)m,使|
OA
+
OB
|=|
OA
-
OB
|
,證明如下:
把y=-mx-1代入橢圓C:3x2+4y2=12中,整理得(3+4m2)x2+8mx-8=0.
由于直線l恒過橢圓內(nèi)定點(diǎn)(0,-1),所以判別式△>0.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
8m
4m2+3
,x1x2=
-8
4m2+3

依題意,若|
OA
+
OB
|=|
OA
-
OB
|
,平方得
OA
OB
=0

即x1x2+y1y2=x1x2+(-mx1-1)•(-mx2-1)=0,
整理得(m2+1)x1x2+m(x1+x2)+1=0,
所以(m2+1)
-8
4m2+3
-
8m2
4m2+3
+1=0
,
整理得m2=-
5
12
,矛盾.
所以不存在實(shí)數(shù)m,使|
OA
+
OB
|=|
OA
-
OB
|
點(diǎn)評(píng):本題考查橢圓的方程與性質(zhì),考查向量知識(shí)的運(yùn)用,考查韋達(dá)定理,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了實(shí)現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案,在銷售利潤達(dá)到10萬元時(shí),按銷售利潤進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎(jiǎng)金總數(shù)不超過5萬元,同時(shí)獎(jiǎng)金不超過利潤的25%,則下列哪個(gè)獎(jiǎng)勵(lì)模型比較符合該公司的要求( 。
A、y=0.25x
B、y=log7x+1
C、y=1.002x
D、y=
3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第一象限角,且cosα=
5
13

(1)求sin2α的值
(2)求
sin(α+
π
4
)
cos(2α+4π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,
m
=(sinA,sinB-sinC),
n
=(a-
3
b,b+c),且
m
n

(1)求角C的值;
(2)若△ABC為銳角三角形,且c=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2,等比數(shù)列{bn}的前n項(xiàng)和為Mn,且Mn=2n-t.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}中c2k-1=k•bk,c2k=a2k-1,其中k=1,2,3,…,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:C1D⊥平面BDC;
(Ⅱ)設(shè)AA1=2,求幾何體C-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(x∈R),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)y=f(x)的定義域?yàn)镽,且當(dāng)x∈R時(shí),f(m+x)=f(m-x)恒成立,求證y=f(x)的圖象關(guān)于直線x=m對(duì)稱;
(2)若函數(shù)y=log2|ax-1|的圖象的對(duì)稱軸是x=2,求非零實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2-
1
5
x3
5的展開式中的常數(shù)項(xiàng)為T,f(x)是以T為周期的偶函數(shù),且當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案