2.已知a>0,b>0,且a+b=1.
(1)若ab≤m恒成立,求m的取值范圍;
(2)若$\frac{1}{a}+\frac{1}≥|{2x-1}|-|{x+1}|$恒成立,求x的取值范圍.

分析 (1)由基本不等式可得;(2)問題轉(zhuǎn)化為|2x-1|-|x+1|≤4,去絕對值化為不等式組,解不等式組可得.

解答 解:(1)∵a>0,b>0,且a+b=1,
∴ab${≤(\frac{a+b}{2})}^{2}$=$\frac{1}{4}$,當且僅當a=b=$\frac{1}{2}$時“=”成立,
由ab≤m恒成立,故m≥$\frac{1}{4}$;
(2)∵a,b∈(0,+∞),a+b=1,
∴$\frac{1}{a}$+$\frac{1}$=($\frac{1}{a}$+$\frac{1}$)(a+b)=2+$\frac{a}$+$\frac{a}$≥4,
當且僅當a=b=$\frac{1}{2}$時“=”成立,
若$\frac{1}{a}+\frac{1}≥|{2x-1}|-|{x+1}|$恒成立,
則只需|2x-1|-|x+1|≤4即可,
只需$\left\{\begin{array}{l}{x≤-1}\\{-(2x-1)+(x+1)≤4}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<\frac{1}{2}}\\{-(2x-1)-(x+1)≤4}\end{array}\right.$或$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1-(x+1)≤4}\end{array}\right.$,
解得:-2≤x≤6.

點評 本題考查了絕對值不等式的解法,分段函數(shù)知識,考查運算能力,轉(zhuǎn)化思想以及分類討論思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線.
(1)求a的值;
(2)對任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍
(3)已知方程f(x)=cx有兩個根x1,x2(x1<x2),若g(x1+x2)+2c=0,求證:b<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知非零向量$\overrightarrow a$、$\overrightarrow b$滿足$\left|{\overrightarrow a+\overrightarrow b}\right|=\left|{\overrightarrow a-\overrightarrow b}\right|=\frac{{2\sqrt{3}}}{3}\left|{\overrightarrow a}\right|$,則$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角為( 。
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,直線PC與底面ABCD所成的角45°,E,F(xiàn),M分別是BC,PC,PA的中點.
(1)PC∥平面MBD;
(2)證明:AE⊥PD;
(3)求二面角E-AF-C的余弦值;
(4)若PA=2,求棱錐C-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=3sin(ωx-\frac{π}{4})(ω>0)$,函數(shù)相鄰兩個零點之差的絕對值為$\frac{π}{2}$,則函數(shù)f(x)圖象的對稱軸方程可以是( 。
A.$x=\frac{π}{8}$B.$x=-\frac{π}{8}$C.$x=\frac{5π}{8}$D.$x=-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進入大氣中,呈現(xiàn)出足夠的濃度,達到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.空氣污染指數(shù)與空氣質(zhì)量級別和空氣質(zhì)量狀況的關(guān)系如下表:
空氣污染指數(shù)
單位:μg/m3
0~5050~100100~150150~200200~300300以上
空氣質(zhì)量級別一級二級三級四級五級六級
空氣質(zhì)量狀況優(yōu)輕度污染中度污染重度污染嚴重污染
2015年1月某日某省x個監(jiān)測點數(shù)據(jù)統(tǒng)計如下:
空氣污染指數(shù)
(單位:μg/m3
[0,50](50,100](100,150](150,200]
監(jiān)測點個數(shù)1540y10
(Ⅰ)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(Ⅱ)若A市共有5個監(jiān)測點,其中有3個監(jiān)測點為輕度污染,2個監(jiān)測點為良.從中任意選取2個監(jiān)測點,事件A“其中至少有一個為良”發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知在△ABC中,角A,B,C的對邊分別為a,b,c,且2sin2A+3cos(B+C)=0.
(1)求角A的大;
(2)若△ABC的面積$S=5\sqrt{3},a=\sqrt{21}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{x}{lnx}-ax$.
(1)若函數(shù)f(x)的圖象在x=e2處的切線與y軸垂直,求實數(shù)a的值;
(2)a=1,x>1時,求證:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知sin($\frac{3π}{2}$+α)=$\frac{3}{5}$,則sin($\frac{π}{2}$+2α)=( 。
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

同步練習冊答案