12.已知sin($\frac{3π}{2}$+α)=$\frac{3}{5}$,則sin($\frac{π}{2}$+2α)=( 。
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

分析 由已知利用誘導公式化簡可得cosα的值,利用誘導公式,二倍角的余弦函數(shù)公式化簡所求即可計算得解.

解答 解:∵sin($\frac{3π}{2}$+α)=$\frac{3}{5}$,
⇒-cosα=$\frac{3}{5}$,
⇒cosα=-$\frac{3}{5}$,
∴sin($\frac{π}{2}$+2α)=cos2α=2cos2α-1=2×(-$\frac{3}{5}$)2-1=-$\frac{7}{25}$.
故選:B.

點評 本題主要考查了誘導公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知a>0,b>0,且a+b=1.
(1)若ab≤m恒成立,求m的取值范圍;
(2)若$\frac{1}{a}+\frac{1}≥|{2x-1}|-|{x+1}|$恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(a)>1,則a的取值范圍是( 。
A.(-∞,1)∪(2,+∞)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設f(x)是定義在R上的函數(shù),對x∈R都有f(-x)=f(x),f(2+x)=f(2-x),且當x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)滿足:?x∈R,f(2x)=sinx+f(x),且f(1)=1,則( 。
A.f($\frac{1}{{2}^{2016}}$)<$\frac{1}{{2}^{2016}}$B.f($\frac{1}{{2}^{2015}}$)<$\frac{1}{{2}^{2016}}$
C.f($\frac{1}{{2}^{2014}}$)<$\frac{1}{4}$+$\frac{3}{{2}^{2016}}$D.f($\frac{1}{{2}^{2013}}$)>$\frac{1}{4}$+$\frac{3}{{2}^{2015}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.命題p:sinθ-$\frac{1}{tanθ}$=tanθ-$\frac{1}{sinθ}$(0<θ<$\frac{π}{4}$)無實數(shù)解,命題q:ex+$\frac{1}{lnx}$=lnx+$\frac{1}{{e}^{x}}$無實數(shù)解.則下列命題為假命題的是( 。
A.p或qB.(¬p)或(¬q)C.p且(¬q)D.p且q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π),若對滿足|f(x1)-f(x2)|=2的x1,x2有|x1-x2|min=π,且函數(shù)f(x)的部分圖象如圖,則函數(shù)f(x)的解析式為( 。
A.f(x)=sin(x+$\frac{5π}{6}$)B.f(x)=sin(x-$\frac{π}{6}$)C.f(x)=sin(2x+$\frac{2π}{3}$)D.f(x)=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.“愛心包裹”是中國扶貧基金會依托中國郵政發(fā)起的一項全民公益活動,社會各界愛心人士只需通過中國郵政網(wǎng)點捐購統(tǒng)一的愛心包裹,就可以一對一地將自己的關(guān)愛送給需要幫助的人.某高校青年志愿者協(xié)會響應號召,組織大一學生作為志愿者,開展一次愛心包裹勸募活動.將派出的志愿者分成甲、乙兩個小組,分別在兩個不同的場地進行勸募,每個小組各6人.愛心人士每捐購一個愛心包裹,志愿者就將送出一個鑰匙扣作為紀念.以下莖葉圖記錄了這兩個小組成員某天勸募包裹時送出鑰匙扣的個數(shù),且圖中甲組的一個數(shù)據(jù)模糊不清,用x表示.已知甲組送出鑰匙扣的平均數(shù)比乙組的平均數(shù)少1個.
(Ⅰ) 求圖中x的值;
(Ⅱ)“愛心包裹”分為價值100元的學習包,和價值200元的“學習+生活”包,在乙組勸募的愛心包裹中100元和200元的比例為3:1,若乙組送出的鑰匙扣的個數(shù)即為愛心包裹的個數(shù),求乙組全體成員勸募的愛心包裹的價值總額;
(Ⅲ)在甲組中任選2位志愿者,求他們送出的鑰匙扣個數(shù)都多于乙組的平均數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.證明極限$\underset{lim}{(x,y)→(0,0)}$$\frac{xy}{{x}^{2}+{y}^{2}}$不存在.

查看答案和解析>>

同步練習冊答案