3.如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點D,問如何在BC上找到一點M,使得兩條小路所在直線AC與DM相互垂直?

分析 建立直角坐標系,求出相關(guān)點的坐標,求出直線DM的方程,然后求解M的坐標即可.

解答 解:以B為坐標原點,BC所在直線為x軸,BA所在直線為y軸,
則:B(0,0),A(0,3),C(4,0),D(4,3),
kAC=$-\frac{3}{4}$,兩條小路所在直線AC與DM相互垂直,可得kDM=$\frac{4}{3}$.DM所在直線方程為:y-3=$\frac{4}{3}$(x-4).
令y=0可得:x=$\frac{7}{4}$.
M所在位置距離B為:$\frac{7}{4}$m.

點評 本題考查直線方程的綜合應(yīng)用,直線垂直關(guān)系的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.計算:cos25°sin55°-cos65°cos55°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知A(0,-5),B(0,-1),則以線段AB為直徑的圓的方程是( 。
A.(x+3)2+y2=2B.x2+(y+3)2=4C.(x+3)2+y2=2D.(x-3)2+y2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(4,-3),|$\overrightarrow$|=1,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{21}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列各值中,比tan$\frac{π}{5}$大的是( 。
A.tan(-$\frac{π}{7}$)B.tan$\frac{9π}{8}$C.tan35°D.tan(-142°)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.若a>1,解關(guān)于x的不等式$\frac{ax}{x-2}$>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知a=2${\;}^{-\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,則a、b、c的大小關(guān)系是b<a<c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如果函數(shù)f(x)=-ax的圖象過點$({3,-\frac{1}{8}})$,那么a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(-3,2),若k$\overrightarrow a$+2$\overrightarrow b$與2$\overrightarrow a$-4$\overrightarrow b$的夾角為鈍角,則實數(shù)k的取值范圍(-∞,-1)∪(-1,$\frac{50}{3}$).

查看答案和解析>>

同步練習冊答案