分析 取AD中點(diǎn)N,連接MN,CN,由三角形的中位線定理可得MN∥PA,進(jìn)一步得到MN∥平面PAB,再由已知證明CN∥AB,得到CN∥平面PAB,與面面平行的判定可得平面CMN∥平面PAB,進(jìn)一步得到CM∥平面PAB.
解答 證明:如圖,
取AD中點(diǎn)N,連接MN,CN,
又M為PD的中點(diǎn),∴MN∥PA,
PA?平面PAB,MN?平面PAB,∴MN∥平面PAB,
∵三角形ACD是正三角形,∴CN⊥AD,且∠CAD=60°,
又AB=BC,∠ABC=120°,∴∠CAB=30°,則∠BAD=90°,
∴BA⊥AD,則CN∥AB,
∵CN?平面PAB,AB?平面PAB,∴CN∥平面PAB,
又MN∩CN=N,∴平面CMN∥平面PAB,則CM∥平面PAB.
點(diǎn)評(píng) 本題考查面面平行的判定和性質(zhì),考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com