6.化簡(jiǎn):
2$\sqrt{si{n}^{2}4+co{s}^{2}4-2sin4cos4}$-$\sqrt{2(si{n}^{2}4+si{n}^{2}4)-2(cos4+sin4)(cos4-sin4)}$.

分析 把要求的式子化為2|cos4-sin4|-2|sin4|,在去掉絕對(duì)值,可得結(jié)果.

解答 解:2$\sqrt{si{n}^{2}4+co{s}^{2}4-2sin4cos4}$-$\sqrt{2(si{n}^{2}4+si{n}^{2}4)-2(cos4+sin4)(cos4-sin4)}$=2|cos4-sin4|-2|sin4|
=2(cos4-sin4)+2sin4=2cos4.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(1)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=5表示的曲線是線段
(2)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=6表示的曲線又是橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=x2-3x-4的定義域?yàn)閇a,b],值域?yàn)閇-$\frac{25}{4}$,-4].則下列說法正確的是(  )
A.a=0,b=0B.若a∈(0,$\frac{3}{2}$),則b∈($\frac{3}{2}$,3)
C.若a=0,則b∈(3,+∞)D.若a∈(0,$\frac{3}{2}$),則b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果MP,OM分別是角α=$\frac{3π}{16}$的正弦線和余弦線,那么下列結(jié)論正確的是(  )
A.MP<OM<0B.MP<0<OMC.MP>OM>0D.OM>MP>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=3x+5x的零點(diǎn)所在的區(qū)間是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)滿足f(0)=0,且f(x+1)-f(x)=2x-1(x∈R).
(1)求函數(shù)f(x)的解析式;
(2)若m>0,函數(shù)f(x)在[m,m+2]上的最小值為3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{{x}^{2}-xy+{y}^{2}=9}\\{{x}^{2}-{y}^{2}-3x-3y=0}\end{array}\right.$,則實(shí)數(shù)x的所有取值構(gòu)成的集合為{-$\sqrt{3}$,0,$\sqrt{3}$,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=($\frac{1}{4}$)x+($\frac{1}{2}$)x-1(x≤-1)的值域是[8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,三棱錐A-BCD中,對(duì)棱AB與CD所成角為60°,且AB=CD=α,該三棱錐被一平面所截,截面為平行四邊形EFGH.
(1)求證:CD∥平面EFGH;
(2)E在AD的何處時(shí),截面面積最大?并求面積的最大值;
(3)求證:四邊形EFGH的周長(zhǎng)為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案