A. | $\frac{{e}^{2}-1}{e+1}$ | B. | $\frac{{e}^{2}+1}{e-1}$ | C. | $\frac{e+1}{e-1}$ | D. | $\frac{e-1}{e+1}$ |
分析 由?x0∈[1,e],使得x0+$\frac{1+a}{{x}_{0}}$≤alnx0成立,可得函數(shù)f(x)=x+$\frac{1+a}{x}$-alnx在x∈[1,e]上的最小值[f(x)]min≤0.
f′(x)=1-$\frac{1+a}{{x}^{2}}$-$\frac{a}{x}$=$\frac{(x+1)[x-(1+a)]}{{x}^{2}}$.由a>0,可得a+1>1,x>a+1時(shí),f′(x)>0;0<x<a+1時(shí),f′(x)<0.對(duì)a分類(lèi)討論即可得出.
解答 解:∵?x0∈[1,e],使得x0+$\frac{1+a}{{x}_{0}}$≤alnx0成立,
∴函數(shù)f(x)=x+$\frac{1+a}{x}$-alnx在x∈[1,e]上的最小值[f(x)]min≤0.
f′(x)=1-$\frac{1+a}{{x}^{2}}$-$\frac{a}{x}$=$\frac{(x+1)[x-(1+a)]}{{x}^{2}}$.
∵a>0,∴a+1>1,∴x>a+1時(shí),f′(x)>0;0<x<a+1時(shí),f′(x)<0.
①當(dāng)a+1≥e時(shí),即a≥e-1時(shí),f(x)在[1,e]上單調(diào)遞減,
∴最小值[f(x)]min=f(e)=e+$\frac{1+a}{e}$-a≤0.解得a≥$\frac{{e}^{2}+1}{e-1}$,
∵$\frac{{e}^{2}+1}{e-1}$>e-1,∴a≥$\frac{{e}^{2}+1}{e-1}$.
①當(dāng)1<a+1<e時(shí),即0<a<e-1時(shí),最小值[f(x)]min=f(1+a)=2+a-aln(1+a)≤0.
∵0<ln(1+a)<1,∴0<aln(1+a)<a,
∴f(1+a)>2.
此時(shí)不存在x0,使得f(x0)≤0.
綜上可得:正數(shù)a的最小值為$\frac{{e}^{2}+1}{e-1}$.
故選:B.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價(jià)轉(zhuǎn)化方法、分類(lèi)討論思想方法,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{9}{4}$] | B. | [$\frac{1}{4}$,$\frac{9}{4}$] | C. | [$\frac{1}{4}$,$\frac{32}{9}$] | D. | [$\frac{1}{4}$,$\frac{17}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,-1) | B. | (1,2) | C. | (1,-2) | D. | (1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2+b2>2a+2b-2 | B. | a2+b2<2a+2b-2 | C. | a2+b2≤2a+2b-2 | D. | a2+b2≥2a+2b-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com