7.已知$sinα+cosα=\frac{{3\sqrt{5}}}{5}$,$α∈({\frac{π}{4},\frac{π}{2}})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;       
(2)sin2α-3sinαcosα+1.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得sinα 和cosα 的值,從而求得要求式子的值.

解答 解:∵已知$sinα+cosα=\frac{{3\sqrt{5}}}{5}$,$α∈({\frac{π}{4},\frac{π}{2}})$,sin2α+cos2α=1,
∴sinα=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{\sqrt{5}}{5}$,
∴(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{\frac{\sqrt{5}}{5}}{-\frac{\sqrt{5}}{5}}$=-1;  
(2)sin2α-3sinαcosα+1=$\frac{20}{25}$-3•$\frac{2\sqrt{5}}{5}$•$\frac{\sqrt{5}}{5}$+1=$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為sn,且a1=2,anan+1=2(Sn+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_1}=-\frac{{\sqrt{2}}}{2}$,${b_n}=\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}(n≥2,且n∈{N^*})$,求{bn}的前n項(xiàng)和Tn
(3)數(shù)列{cn}滿足lgc1=$\frac{1}{3}$,lgcn=$\frac{{{a_{n-1}}}}{3^n}$(n≥2,且n∈N*),試問(wèn)是否存在正整數(shù)p,q其中(1<p<q),使c1,cp,cq成等比數(shù)列?若存在求出滿足條件所有的數(shù)組(p,q);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{{e}^{2}-1}{x}$,x≠0.其中e=2.71828…
(1)設(shè)h(x)=f(x)+$\frac{1}{x}$,求函數(shù)h(x)在[$\frac{1}{2}$,2]上的值域;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|f(x)-1|<a成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow a=(x-1,2),\overrightarrow b=(2,1)$,則$\overrightarrow a⊥\overrightarrow b$的充要條件是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且acosB-bcosA=$\frac{1}{2}$c,當(dāng)tan(A-B)取最大值時(shí),角B的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.甲、乙兩名運(yùn)動(dòng)員在某項(xiàng)測(cè)試中的6次成績(jī)的莖葉圖如圖所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的平均數(shù),s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的方差,則有( 。
A.${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$B.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$
C.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$D.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.1337與382的最大公約數(shù)是(  )
A.191B.382C.201D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在公差不為0的等差數(shù)列{an}中,2a4-a92+2a14=0,數(shù)列{bn}是等比數(shù)列,且a9=b9,則b8b10=( 。
A.4B.16C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y滿足滿足約束條件$\left\{\begin{array}{l}x+y≤10\;\\ x-y≤2\;\\ x≥3\end{array}\right.$,那么z=x2+y2的最大值為58.

查看答案和解析>>

同步練習(xí)冊(cè)答案