19.設(shè)拋物線y2=4x上的一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離為5.

分析 由題意可得點P的橫坐標為4,由拋物線的定義可得點P到該拋物線焦點的距離等于點P到準線x=-1的距離,由此求得結(jié)果.

解答 解:由于拋物線y2=4x上一點P到y(tǒng)軸的距離是4,故點P的橫坐標為4.
再由拋物線y2=4x的準線為x=-1,
以及拋物線的定義可得點P到該拋物線焦點的距離等于點P到準線的距離,
故點P到該拋物線焦點的距離是4-(-1)=5,
故答案為:5.

點評 本題主要考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在[2,+∞) 上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.AB是⊙O的直徑,點C是⊙O上的動點,過動點C的直線VC垂直于⊙O所在的平面,D,E分別是VA,VC的中點.
(1)試判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)若已知AB=VC=2,當三棱錐V-ABC體積最大時,求點C到面VBA的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}是公差為2的等差數(shù)列,且a1,a4,a13成等比數(shù)列,數(shù)列{$\frac{_{n}}{{a}_{n}}$}是首項為1,公比為3的等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)數(shù)列{an+bn}的前n項和Rn,若不等式$\frac{{R}_{n}}{n}$≤λ•3n+n+3對n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,正四棱錐S-ABCD的底面邊長為2,E,F(xiàn)分別為SA,SD的中點.
(1)當SA=$\sqrt{5}$時,證明:平面BEF⊥平面SAD;
(2)若平面BEF與底面ABCD所成的角為$\frac{π}{3}$,求S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復(fù)數(shù)z=(1+i)(a+2i)(i為虛數(shù)單位)是純虛數(shù),則實數(shù)a等于(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)函數(shù)f(x)在R上的導函數(shù)是f′(x),對?x∈R,f′(x)<x.若f(1-a)-f(a)≤$\frac{1}{2}$-a,則實數(shù)a的取值范圍是a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{\frac{1}{2}},x≥0}\\{-x,x<0}\end{array}\right.$,則f[f(-4)]的值是( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各角中與-$\frac{π}{4}$終邊相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習冊答案