3.已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)若f($\frac{1}{3}$)=-1,求滿足f(x)-f($\frac{1}{x-2}$)≥2的x的取值范圍.

分析 (1)直接根據(jù)條件f(xy)=f(x)+f(y),令x=y=1代入即可求出f(1)的值;
(2)先根據(jù)f($\frac{1}{3}$)=-1得出f(3)=1,從而f(9)=2,因此,原不等式等價(jià)為:$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x≥\frac{9}{x-2}}\end{array}\right.$,解之即可.

解答 解:(1)因?yàn)閒(xy)=f(x)+f(y),
所以,令x=y=1代入得,
f(1)=f(1)+f(1),解得f(1)=0,
即f(1)的值為0;
(2)因?yàn)閒(3)+f($\frac{1}{3}$)=f(3×$\frac{1}{3}$)=f(1)=0,
且f($\frac{1}{3}$)=-1,所以,f(3)=1,
所以,f(3)+f(3)=f(9)=2,
因此,不等式f(x)-f($\frac{1}{x-2}$)≥2可化為:
f(x)≥f($\frac{1}{x-2}$)+f(9)=f($\frac{9}{x-2}$),
再根據(jù)函數(shù)f(x)是定義在(0,+∞)上單調(diào)遞增,
所以,$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x≥\frac{9}{x-2}}\end{array}\right.$,解得,x≥1+$\sqrt{10}$,
故原不等式的解集為:[1+$\sqrt{10}$,+∞).

點(diǎn)評(píng) 本題主要考查了抽象函數(shù)的函數(shù)值,以及運(yùn)用抽象函數(shù)的單調(diào)性和特殊值解不等式,涉及一元二次不等式的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l:y=x+1平分圓C:(x-1)2+(y-b)2=4,則直線x=3同圓C的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.己知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,且($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求直線x-2y-1=0關(guān)于直線x+y-1=對(duì)稱直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知x>0,y>0,x+2y+2xy=8.
(1)求xy的最大值;
(2)求x+2y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x|2a-x|+2x,若函數(shù)f(x)在R上是增函數(shù),則實(shí)數(shù)a的取值范圍[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列a1,a2-a1.a(chǎn)3-a2,…,an-an-1是以1為首項(xiàng),3為公比的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式:
(2)若數(shù)列bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過圓x2+y2=2上一點(diǎn)(1,1)的切線方程為x+y-2=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案