分析 由二倍角公式得到y(tǒng)=sin(2x+$\frac{π}{4}$),由此能求出函數(shù)y=cos2x-sin2x+2sinxcosx的單調(diào)遞增區(qū)間和最大值.
解答 解:y=cos2x-sin2x+2sinxcosx
=cos2x+sin2x
=sin(2x+$\frac{π}{4}$),
∴函數(shù)y=cos2x-sin2x+2sinxcosx的單調(diào)遞增區(qū)間滿足:
-$\frac{π}{2}+2kπ$$≤2x+\frac{π}{4}≤$$\frac{π}{2}+2kπ$,k∈Z,
解得-$\frac{3}{8}π+kπ$≤x≤$\frac{π}{8}+kπ$,
∴函數(shù)y=cos2x-sin2x+2sinxcosx的單調(diào)遞增區(qū)間為[-$\frac{3}{8}π+kπ$,$\frac{π}{8}+kπ$],k∈Z;
函數(shù)y=cos2x-sin2x+2sinxcosx的最大值為1.
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)增區(qū)間和最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②和④ | B. | ②和③ | C. | ③和④ | D. | ①和② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com