7.已知正四面體的棱長為1,那么它的外接球半徑為$\frac{\sqrt{6}}{4}$.

分析 由正四面體的棱長,求出正四面體的高,設(shè)外接球半徑為x,利用勾股定理求出x的值

解答 解:正四面體的棱長為:1,
底面三角形的高:$\frac{\sqrt{3}}{2}$,
棱錐的高為:$\sqrt{{1}^{2}-({\frac{\sqrt{3}}{3})}^{2}}$=$\frac{\sqrt{6}}{3}$,
設(shè)外接球半徑為x,
x2=($\frac{\sqrt{6}}{3}$-x)2+($\frac{\sqrt{3}}{3}$)2,解得x=$\frac{\sqrt{6}}{4}$;
所以棱長為1的正四面體的外接球的半徑$\frac{\sqrt{6}}{4}$.
故答案為:$\frac{\sqrt{6}}{4}$.

點評 本題考查球的內(nèi)接多面體的知識,關(guān)鍵是明確球半徑與棱錐的高的關(guān)系,考查計算能力,邏輯思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)有一個邊長為3的正三角形,記為A1,將A1的每邊三等分,在中間的線段上向形外作正三角形,去掉中間的線段后得到的圖形記為A2,將A2的每邊三等分,再重復(fù)上述過程,得到圖象A3,再重復(fù)上述過程,得到圖形A4,A5,則A3的周長是( 。
A.16B.$\frac{16}{3}$C.$\frac{256}{9}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l過點A(3,2)與圓x2+y2-4x+3=0相切,則直線l的方程為x=3或3x-4y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{{4}^{x}(x≤\frac{1}{2})}\\{lo{g}_{a}x(x>\frac{1}{2})}\end{array}\right.$的最大值是2,則a的取值范圍是0<a<$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCD繞y軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列推理錯誤的是( 。
A.A∈l,A∈α,B∈l,B∈α⇒l?αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l?α,A∈l⇒A∉αD.A∈l,l?α⇒A∈α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2-(5a-1)x+3a+1(a∈R).
(1)若f(x)在區(qū)間[1,+∞)上是單調(diào)增函數(shù),求a的取值范圍;
(2)在(1)的條件下,若函數(shù)f(x)在區(qū)間[1,5]上有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項和為Sn,且a3=2a7,S4=17
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.雙曲線x2-y2=a2(a>0)的兩個焦點分別為F1,F(xiàn)2,P為雙曲線上任意一點,求證:|PF1|,|PO|,|PF2|成等比數(shù)列(O為坐標原點)

查看答案和解析>>

同步練習(xí)冊答案