3.已知B1、B2是橢圓短軸的兩個(gè)端點(diǎn),O為橢圓的中心,過左焦點(diǎn)F1作長軸的垂線交橢圓于P,若|OF1|,|F1B2|,|B1B2|成等比數(shù)列,則 $\frac{|O{F}_{2}|}{|P{F}_{2}|}$的值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{2}}{3}$

分析 由題意可以先設(shè)出橢圓的方程,因?yàn)檫^左焦點(diǎn)F1作長軸的垂線交橢圓于P,所以可以利用橢圓的方程及左焦點(diǎn)F1求出|PF1|=$\frac{^{2}}{a}$,運(yùn)用橢圓的定義,求得|PF2|,可得再由等比數(shù)列的性質(zhì),得到方程進(jìn)而求出a=$\sqrt{2}$b,即可得到所求值.

解答 解:由題意設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
令x=-c得y2=b2(1-$\frac{{c}^{2}}{{a}^{2}}$)=$\frac{^{4}}{{a}^{2}}$,
∴|PF1|=$\frac{^{2}}{a}$,|PF2|=2a-$\frac{^{2}}{a}$,
∴$\frac{|O{F}_{2}|}{|P{F}_{2}|}$=$\frac{c}{2a-\frac{^{2}}{a}}$=$\frac{ac}{2{a}^{2}-^{2}}$,
又由|F1B2|2=|OF1|•|B1B2|得a2=2bc,
∴a4=4b2(a2-b2).
∴(a2-2b22=0.∴a2=2b2.即a=$\sqrt{2}$b,
c2=a2-b2=b2,即c=b,
則$\frac{ac}{2{a}^{2}-^{2}}$=$\frac{\sqrt{2}^{2}}{3^{2}}$=$\frac{\sqrt{2}}{3}$,即$\frac{|O{F}_{2}|}{|P{F}_{2}|}$=$\frac{\sqrt{2}}{3}$,
故選:B.

點(diǎn)評(píng) 此題重點(diǎn)考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),等比中項(xiàng)等,還考查了橢圓的定義的運(yùn)用,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=-x2+4x,x∈[0,1],則f(x)的最大值為3,最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{2x-4}{4x+3}$,則f(0)=$-\frac{4}{3}$,f(a+2)=$\frac{2a}{4a+11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(2,-3,1),$\overrightarrow$=(2,0,3),$\overrightarrow{c}$=(0,0,2).求:
(1)$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$);
(2)$\overrightarrow{a}$+6$\overrightarrow$-8$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)y=(2)x+m不經(jīng)過第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求f(x)=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.使內(nèi)接橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的矩形面積最大,矩形的長為$\sqrt{2}$a,寬為$\sqrt{2}$b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線與圓x2+(y-$\sqrt{2}$)2=1至少有一個(gè)交點(diǎn),則雙曲線離心率的取值范圍是(  )
A.(1,2)B.(1,$\sqrt{2}$]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}),z=1o{g_b}\frac{1}{a}$,則(  )
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

查看答案和解析>>

同步練習(xí)冊(cè)答案