13.己知a,b,c為正實(shí)數(shù),且a+b+c=2.
(1)求證:ab+bc+ac≤$\frac{4}{3}$;
(2)若a,b,c都小于1,求a2+b2+c2的取值范圍.

分析 (1)由a+b+c=2,得到8=2a2+2b2+2c2+4ab+4bc+4ca,利用基本不等式得以證明,
(2)由(1)和基本不等式得到a2+b2+c2≥$\frac{4}{3}$,再根據(jù)a-a2=a(1-a),0<a<1,得到a>a2,繼而求出范圍.

解答 (1)證明:∵a+b+c=2,
∴a2+b2+c2+2ab+2bc+2ca=4,
∴2a2+2b2+2c2+4ab+4bc+4ca=8
∴8=2a2+2b2+2c2+4ab+4bc+4ca≥6ab+6abc+6ac,當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào),
∴ab+bc+ac≤$\frac{4}{3}$;
(2)解:由(1)知,a2+b2+c2+2ab+2bc+2ca=4,
∴4≤a2+b2+c2+a2+b2+b2+c2+a2+c2=3(a2+b2+c2),當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào),
∴a2+b2+c2≥$\frac{4}{3}$,
∵a-a2=a(1-a),0<a<1,∴a>a2
同理b>b2,c>c2
∴a2+b2+c2<a+b+c=2,
∴$\frac{4}{3}$≤a2+b2+c2<2,
∴a2+b2+c2的取值范圍為[$\frac{4}{3}$,2).

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用,關(guān)鍵是掌握等號(hào)成立的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求過(guò)點(diǎn)P(0,3),并且與坐標(biāo)軸圍成的三角形的面積是6的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=0,nan+1-(n+1)an=n2+n+1,n∈N*
(1)證明:{$\frac{{a}_{n}+1}{n}$}為等差數(shù)列:
(2)求數(shù)列{an}的通項(xiàng)公式:
(3)證明:$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解不等式:$\frac{1}{C\stackrel{3}{n}}$-$\frac{1}{{C\stackrel{4}{n}}_{\;}}$<$\frac{2}{C\stackrel{5}{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知冪函數(shù)f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2對(duì)任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示橢圓,那么a的范圍為(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓經(jīng)過(guò)點(diǎn)($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和點(diǎn)($\frac{2\sqrt{2}}{3}$,1),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知sinα和cosα是方程x2-kx+k+1=0的兩根,且π<α<2π,求k,α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.且a1+2a23a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a1,a2的值;
(2)求證:數(shù)列{Sn+2}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案