【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》第七章“盈不足”中有一問題:“今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)一尺.蒲生日自半.莞生日自倍.問幾何日而長(zhǎng)等?”(蒲常指一種多年生草本植物,莞指水蔥一類的植物)現(xiàn)欲知幾日后,莞高超過蒲高一倍.為了解決這個(gè)新問題,設(shè)計(jì)如圖所示的程序框圖,輸入,.那么在①處應(yīng)填_______和輸出的值為( )
A. 4B. 4
C. 3D. 3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民出行,倡導(dǎo)低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,在推廣期內(nèi)采用隨機(jī)優(yōu)惠鼓勵(lì)市民掃碼支付乘車.該公司某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)推廣期第一周內(nèi)使用掃碼支付的情況,其中(單位:天)表示活動(dòng)推出的天次,(單位:十人次)表示當(dāng)天使用掃碼支付的人次,整理后得到如圖所示的統(tǒng)計(jì)表1和散點(diǎn)圖.
表1:
x | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 |
y | 7 | 12 | 20 | 33 | 54 | 90 | 148 |
(1)由散點(diǎn)圖分析后,可用作為該線路公交車在活動(dòng)推廣期使用掃碼支付的人次關(guān)于活動(dòng)推出天次的回歸方程,根據(jù)表2的數(shù)據(jù),求此回歸方程,并預(yù)報(bào)第8天使用掃碼支付的人次(精確到整數(shù)).
表2:
|
|
| img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> | ||
4 | 52 | 3.5 | 140 | 2069 | 112 |
表中,.
(2)推廣期結(jié)束后,該車隊(duì)對(duì)此期間乘客的支付情況進(jìn)行統(tǒng)計(jì),結(jié)果如表3.
表3:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
頻率 | 10% | 60% | 30% |
優(yōu)惠方式 | 無優(yōu)惠 | 按7折支付 | 隨機(jī)優(yōu)惠(見下面統(tǒng)計(jì)結(jié)果) |
統(tǒng)計(jì)結(jié)果顯示,掃碼支付中享受5折支付的頻率為,享受7折支付的頻率為,享受9折支付的頻率為.已知該線路公交車票價(jià)為1元,將上述頻率作為相應(yīng)事件發(fā)生的概率,記隨機(jī)變量為在活動(dòng)期間該線路公交車搭載乘客一次的收入(單位:元),求的分布列和期望.
參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線x2=2py(p>0)的焦點(diǎn),斜率為的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且|AB|=9.
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點(diǎn),C為拋物線上一點(diǎn),若,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為,第二次出現(xiàn)的點(diǎn)數(shù)為,試就方程組解答下列各題:
(1)求方程組只有一個(gè)解的概率;
(2)求方程組只有正數(shù)解的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:
來源: 題型:【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρ(1-cos2θ)=8cosθ,直線ρcosθ=1與曲線C相交于M,N兩點(diǎn),直線l過定點(diǎn)P(2,0)且傾斜角為α,l交曲線C于A,B兩點(diǎn).
(1)把曲線C化成直角坐標(biāo)方程,并求|MN|的值;
(2)若|PA|,|MN|,|PB|成等比數(shù)列,求直線l的傾斜角α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測(cè)16日溫度要低于
D. 由折線圖能預(yù)測(cè)本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com