13.在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,∠BAC=30°,BC=2,PA=3,則三棱錐外接球的體積是(  )
A.$\frac{125π}{6}$B.$\frac{125π}{24}$C.25πD.$\frac{500π}{3}$

分析 求出AB=4,PB=5,確定PB是三棱錐外接球的直徑,可得R,由此能求出三棱錐的外接球的體積.

解答 解:∵∠ACB=90°,∠BAC=30°,BC=2,
∴AB=4,
∵PA⊥底面ABC,PA=3,
∴PB=5.
∵PA⊥底面ABC,∠ACB=90°,
∴PC⊥BC,
∴PB是三棱錐外接球的直徑,
∴三棱錐外接球半徑R=$\frac{5}{2}$
故三棱錐P-ABC外接球的體積V=$\frac{4}{3}π•(\frac{5}{2})^{3}$=$\frac{125}{6}$π
故選:A.

點評 本題考查三棱錐的外接球體積的求法,是中檔題,確定球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2(x≥2)}\\{lo{g}_{2}x(x<2)}\end{array}\right.$,若f(m)=7,則實數(shù)m的值為(  )
A.0B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=$\frac{a{x}^{2}-8x+b}{{x}^{2}+1}$的最大值是9,最小值是1,則a=5,b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若方程x2-4x+3+m=0在x∈(0,3)時有唯一實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)=x2-bx-2.
(Ⅰ)當(dāng)b=1,寫出函數(shù)y=|f(x)|單調(diào)遞增區(qū)間;
(Ⅱ)定義g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,若函數(shù)y=g(x)-$\frac{1}{2}$b在[-2,2]上有三個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知在三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,△PAC為正三角形且邊長為4,則該三棱錐外接球O的表面積S=$\frac{64}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)球Γ的球心為O,平面α截Γ所得的圓為C1,經(jīng)過球心O的平面β截Γ所得的圓為C2,若圓C1與C2的公共弦長為球Γ的半徑,平面α與平面β的夾角為30°,O到平面α的距離為$\sqrt{3}$,則球Γ的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的中心為O,左焦點為F,P是雙曲線上的一點$\overrightarrow{OP}$•$\overrightarrow{PF}$=0且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=3${\overrightarrow{OF}^2}$,則該雙曲線的離心率是( 。
A.$\frac{{\sqrt{13}+1}}{3}$B.$\frac{{\sqrt{7}+\sqrt{3}}}{3}$C.$\sqrt{7}$+$\sqrt{3}$D.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式(|3x-1|-1)•(sinx-2)>0的解集是$(0,\frac{2}{3})$.

查看答案和解析>>

同步練習(xí)冊答案