5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2(x≥2)}\\{lo{g}_{2}x(x<2)}\end{array}\right.$,若f(m)=7,則實(shí)數(shù)m的值為( 。
A.0B.1C.-3D.3

分析 根據(jù)解析式對(duì)m進(jìn)行分類(lèi)討論,分別代入解析式化簡(jiǎn)f(m)=7,求出實(shí)數(shù)m的值.

解答 解:①當(dāng)m≥2時(shí),f(m)=7為:m2-2=7,
解得m=3或m=-3(舍去),則m=3;
②當(dāng)m<2時(shí),f(m)=7為:${log}_{2}^{m}$=7,
解得m=27>2,舍去,
綜上可得,實(shí)數(shù)m的值是3,
故選:D.

點(diǎn)評(píng) 本題考查分段函數(shù)的函數(shù)值,以及分類(lèi)討論思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,射線(xiàn)θ=β和θ=β-$\frac{π}{3}$(0<β<$\frac{π}{2}$)與圓C分別異于極點(diǎn)O的A,B兩點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.甲、乙兩人射擊,擊中靶子的概率分別為0.9,0.8,若兩人同時(shí)射擊,則他們都脫靶的概率為0.02.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“雙曲線(xiàn)C的漸近線(xiàn)為y=±$\sqrt{2}$x”是“雙曲線(xiàn)C的離心率為$\sqrt{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿(mǎn)足a1=2,前n項(xiàng)和為Sn,若Sn=2(an-1),(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(log2an+12-(log2an2,若cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{|x-y|≤2}\\{x+3y-14≤0}\\{x,y∈{N}^{*}}\end{array}\right.$,則z=x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.2015年10月青島大排檔宰客一只大蝦賣(mài)38元,被網(wǎng)友稱(chēng)為“天價(jià)大蝦”,為了弄清楚大蝦的實(shí)際價(jià)格與利潤(rùn),記者調(diào)查了某蝦類(lèi)養(yǎng)殖戶(hù),在一個(gè)蝦池中養(yǎng)殖一種蝦,每季養(yǎng)殖成本為10000元,此蝦的市場(chǎng)價(jià)格和蝦池的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
蝦池產(chǎn)量(kg)300500
概率0.50.5
蝦的市場(chǎng)價(jià)格(元/(kg)60100
概率0.40.6
(1)設(shè) X表示在這個(gè)蝦池養(yǎng)殖1季這種蝦的利潤(rùn),求 X的分布列和期望;
(2)若在這個(gè)蝦池中連續(xù)3季養(yǎng)殖這種蝦,求這3季中至少有2季的利潤(rùn)不少于20000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)y=sin(2x+φ)(0<φ<π)的圖象關(guān)于直線(xiàn)x=$\frac{π}{3}$對(duì)稱(chēng),則φ的值為( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,∠BAC=30°,BC=2,PA=3,則三棱錐外接球的體積是( 。
A.$\frac{125π}{6}$B.$\frac{125π}{24}$C.25πD.$\frac{500π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案