17.用1、2、3、4四個(gè)數(shù)字可以組成百位上不是3的無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)是18.

分析 先從1,2,4種選一個(gè)確定百位,其它位置的數(shù)的任意排,問題得以解決.

解答 解:先從1,2,4種選一個(gè)確定百位,其它位置的數(shù)的任意排,故有A31A32=18種,
故答案為:18.

點(diǎn)評 本題考查分步計(jì)數(shù)原理,關(guān)鍵是分步,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,圓O的直徑AB與弦CD交于點(diǎn)E,且E為OA的中點(diǎn),若OA=2,∠BCD=30°,則線段CE的長為( 。
A.1B.$\frac{3\sqrt{5}}{5}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對定義域內(nèi)的任意x,均有f(f(x)-lnx-x3)=2,則f(e)=( 。
A.e3+1B.e3+2C.e3+e+1D.e3+e+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直角三角形ABC中,AC=6,BC=3,∠ABC=90°,點(diǎn)D,E分別是邊AC,AB上的動(dòng)點(diǎn)(不含A點(diǎn)),且滿足$\frac{AD}{AE}=\frac{{\sqrt{3}}}{2}$(圖1).將△ADE沿DE折起,使得平面ADE⊥平面BCDE,連結(jié)AB、AC(圖2).
(I)求證:AD⊥平面BCDE;
(II)求四棱錐A-BCDE體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.運(yùn)行如圖的程序框圖,若輸出的y值隨著輸入的x的增大而增大,則a的取值不可能是( 。
A.$\frac{5}{2}$B.$\frac{7}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系內(nèi)有點(diǎn)P(a,b)(a≠b),且a,b∈{1,2,3,4,5,6},當(dāng)P在圓x2+y2=25內(nèi)部,求點(diǎn)P的個(gè)數(shù).(不要用列舉法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)M是△ABC所在平面內(nèi)的一點(diǎn),且滿足5$\overrightarrow{AM}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,則△AMB與△ABC的面積比為(  )
A.$\frac{5}{2}$B.$\frac{2}{5}$C.$\frac{7}{5}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.三個(gè)女生和五個(gè)男生排成一排.
(1)如果女生須全排在一起,有多少種不同的排法?
(2)如果女生必須全分開,有多少種不同的排法?
(3)如果兩端都不能排女生,有多少種不同的排法?
(4)如果男生按固定順序,有多少種不同的排法?
(5)如果三個(gè)女生站在前排,五個(gè)男生站在后排,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=(x-a-1)(2x-a),g(x)=ln(x-a),若當(dāng)x>a時(shí),f(x)•g(x)≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.[-2,0]C.(-∞,2]D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊答案