12.運(yùn)行如圖的程序框圖,若輸出的y值隨著輸入的x的增大而增大,則a的取值不可能是(  )
A.$\frac{5}{2}$B.$\frac{7}{2}$C.3D.4

分析 模擬執(zhí)行程序框圖,可得分段函數(shù)y=$\left\{\begin{array}{l}{(a-2)x}&{x<2}\\{{2}^{x}-1}&{x≥2}\end{array}\right.$單調(diào)遞增,從而解得參數(shù)a的范圍.

解答 解:由程序框圖,可得其功能是計(jì)算并輸出分段函數(shù)y=$\left\{\begin{array}{l}{(a-2)x}&{x<2}\\{{2}^{x}-1}&{x≥2}\end{array}\right.$的值,
∵輸出的y隨著輸入的x的增大而增大,即輸出的分段函數(shù)為增函數(shù),
∴$\left\{\begin{array}{l}{a-2>0}\\{(a-2)•2≤{2}^{2}-1}\end{array}\right.$,
∴解得:2<a≤$\frac{7}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了選擇結(jié)構(gòu)的程序框圖,解題的關(guān)鍵是分段函數(shù)單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線l:y=kx+1與雙曲線C:x2-y2=1僅有一個(gè)公共點(diǎn),則k=±1,±$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若直線ax+y-a+1=0(a∈R)與圓x2+y2=4交于A、B兩點(diǎn)(其中O為坐標(biāo)原點(diǎn)),則$\overrightarrow{AO}$$•\overrightarrow{AB}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.用反證法證明命題:“在一個(gè)三角形的三個(gè)內(nèi)角中,至少有二個(gè)銳角”時(shí),假設(shè)部分的內(nèi)容應(yīng)為在一個(gè)三角形的三個(gè)內(nèi)角中,至多有一個(gè)銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.三個(gè)人玩?zhèn)髑蛴螒,每個(gè)人都等可能地傳給另兩人(不自傳),若從A發(fā)球算起,經(jīng)4次傳球又回到A手中的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.用1、2、3、4四個(gè)數(shù)字可以組成百位上不是3的無(wú)重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個(gè)負(fù)數(shù)”時(shí)的假設(shè)為(  )
A.a,b,c,d全為正數(shù)B.a,b,c,d中至多有一個(gè)負(fù)數(shù)
C.a,b,c,d中至少有一個(gè)正數(shù)D.a,b,c,d全都大于等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)計(jì)算$\frac{{A}_{9}^{5}{+A}_{9}^{4}}{{A}_{10}^{6}{-A}_{10}^{5}}$;
(2)證明:${A}_{n+1}^{m}$-${A}_{n}^{m}$=m${A}_{n}^{m-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是單位向量,且$\overrightarrow{a}$•$\overrightarrow$=0,則($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)的最大值為1+$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案