12.△ABC中,已知角A,B,C的對邊a,b,c成等比數(shù)列,公比是q.
(1)若A,B,C成等差數(shù)列,求q的值.
(2)求q的取值范圍.

分析 (1)由已知角A,B,C成等差數(shù)列可求B,A+C=120°,再由a,b,c成等比數(shù)列可得b2=ac,結(jié)合正弦定理可得sin2B=sinAsinC,利用二倍角及輔助角公式整理可得sin(2A-30°)=1,求得A,B,C,得到△ABC是等邊三角形.即可得解.
(2)依題意,設(shè)三角形的三邊分別為a,aq,aq2,利用任意兩邊之和大于第三邊即可求得q的取值范圍,從而可得結(jié)論.

解答 解:(1)△ABC中,∵A、B、C成等差數(shù)列,可得2B=A+C. 再由A+B+C=180°可得,B=60°,A+C=120°.
由a,b,c成等比數(shù)列可得b2=ac,由正弦定理可得sin2B=sinAsinC,
即  $\frac{3}{4}$=sinAsin(120°-A)=$\frac{\sqrt{3}}{2}$sinAcosA+$\frac{1}{2}$sin2A=$\frac{\sqrt{3}}{4}$sin2A-$\frac{cos2A}{4}$+$\frac{1}{4}$.
整理可得,sin(2A-30°)=1,故有 A=60°,
∴B=C=60°,故△ABC是等邊三角形.
∴q=1.
(2)設(shè)三角形的三邊分別為a,aq,aq2,
則a+aq>aq2,a+aq2>aq,aq+aq2>a,
解得:$\frac{-1+\sqrt{5}}{2}$<q<$\frac{1+\sqrt{5}}{2}$.

點(diǎn)評 解三角形的常見類型是結(jié)合正弦定理、余弦定理,三角形的內(nèi)角和、大邊對大角等知識(shí)綜合應(yīng)用,而二倍角公式及輔助角公式是經(jīng)常用到的公式,要注意掌握,本題考查等比數(shù)列的性質(zhì),考查解不等式組的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在北方某城市隨機(jī)選取一年內(nèi)40天的空氣污染指數(shù)(API)的監(jiān)測數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:
 API[0,50](50,100](100,150](150,200](200,250](250,300](300,+∞)
 天數(shù)   35810842
(Ⅰ)已知污染指數(shù)API大于250為重度污染,若本次抽取樣本數(shù)據(jù)有9天是在供暖季,其中有3天為重度污染,完成下面的2×2列聯(lián)表,問有多大把握認(rèn)為該城市空氣重度污染與供暖有關(guān)?
非重度污染重度污染合計(jì)
供暖季
非供暖季
合計(jì)40
(Ⅱ)在樣本中,從污染指數(shù)API大于250的6天中任取2天,求至少有1天API大于300的概率.
附注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.250.150.100.050.0250.010.0050.001
k1.3232.0722.7063.8415.0256.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1:a2=1:2,則S1:S3=( 。
A.1:3B.1:4C.1:5D.1:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是奇函數(shù)又在其定義域上是增函數(shù)的是(  )
A.y=-$\frac{2}{x}$B.y=2xC.y=log2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(x+1)ln(x+1)-xlnx,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)a≥ln2時(shí),f(x)≤a(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x∈R,2x|2x-a|-6=0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.y=$\frac{{x}^{2}+13}{\sqrt{{x}^{2}+9}}$的最小值為$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)a=log${\;}_{\frac{1}{3}}$2,b=log2e,c=($\frac{1}{3}$)0.4,則a,b,c的大小順序?yàn)椋ā 。?table class="qanwser">A.c<a<bB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點(diǎn)M在△ABC的邊AB上,且$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{MB}$,則$\overrightarrow{CM}$=( 。
A.$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{1}{2}$$\overrightarrow{CB}$B.2$\overrightarrow{CA}$-2$\overrightarrow{CB}$C.$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$D.$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$

查看答案和解析>>

同步練習(xí)冊答案