1.若復(fù)數(shù)z滿足:iz=i+z,則z=(  )
A.1+iB.1-iC.$\frac{1+i}{2}$D.$\frac{1-i}{2}$

分析 由iz=i+z,得$z=\frac{i}{-1+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,則答案可求.

解答 解:由iz=i+z,
得$z=\frac{i}{-1+i}=\frac{i(-1-i)}{(-1+i)(-1-i)}=\frac{1-i}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,AB=AC,M為AC邊上點(diǎn),且AM=$\frac{\sqrt{3}}{2}$AC,BM=1,則△ABC的面積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}中,a1=2,an=3an-1+2(n≥2,n∈N*),數(shù)列{bn}中,bn=an+1.
(Ⅰ)證明數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)若cn=$\frac{_{n}}{(_{n}+1)(_{n}+3)}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+3}{n+3}$,求$\frac{{a}_{n}}{_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.角α的終邊在第二、四象限的角平分線上,則角α的集合為{α|α=kπ+$\frac{3π}{4}$,k∈z }(用弧度制表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$\frac{π}{6}<α<\frac{π}{2}$,$sin(α-\frac{π}{6})=\frac{1}{3}$,則$tan(α-\frac{π}{6})$=$\frac{{\sqrt{2}}}{4}$,$sin(\frac{2π}{3}+2α)$=$-\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.經(jīng)過(guò)點(diǎn)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段沒(méi)有公共點(diǎn),則直線l的斜率k與傾斜角α的取值范圍分別是( 。
A.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{3π}{4}$)B.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
C.(-1,1),[$\frac{π}{4}$,$\frac{3π}{4}$]D.(-1,1),[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若f(2x)=3x2+1,則函數(shù)f(4)=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.1B.2C.$\sqrt{3}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案