12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+3}{n+3}$,求$\frac{{a}_{n}}{_{n}}$.

分析 由等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式推導(dǎo)出$\frac{{a}_{n}}{_{n}}$=$\frac{{S}_{2n-1}}{{T}_{2n-1}}$,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+3}{n+3}$,
∴$\frac{{a}_{n}}{_{n}}$=$\frac{2{a}_{n}}{2_{n}}$=$\frac{{a}_{1}+{a}_{2n-1}}{_{1}+_{2n-1}}$=$\frac{\frac{2n-1}{2}({a}_{1}+{a}_{2n-1})}{\frac{2n-1}{2}(_{1}+_{2n-1})}$
=$\frac{{S}_{2n-1}}{{T}_{2n-1}}$=$\frac{7(2n-1)+3}{(2n-1)+3}$=$\frac{7n-2}{n+1}$.

點(diǎn)評 本題考查兩個(gè)等差數(shù)列中某一項(xiàng)比值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點(diǎn)P是△ABC所在平面內(nèi)的一點(diǎn),$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=4$\overrightarrow{AB}$,且△ABC的面積為S,則下列判斷正確的是( 。
A.點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{3}$SB.點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{2}$S
C.點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{3}$SD.點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{2}$S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}=(1,1)$,$\overrightarrow$=($\sqrt{2}$,0),$\overrightarrow{c}$=(-2,$\sqrt{2}$),則$\overrightarrow{a}+\overrightarrow$與$\overrightarrow+\overrightarrow{c}$的位置關(guān)系是($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow$+$\overrightarrow{c}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1并且垂直于x軸的直線為l,若過原點(diǎn)O和F2并和直線l相切的圓的半徑等于點(diǎn)F2到雙曲線C的兩條漸近線的距離之和,則雙曲線C的離心率為$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知多項(xiàng)式(1+ax)3(3-2x)4的展開式的各項(xiàng)系數(shù)和為27.則其展開式中按x的降冪排列的第2項(xiàng)系數(shù)等于-576.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A、B兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),是否存在常數(shù)λ,使得$\overrightarrow{OA}•\overrightarrow{OB}$+λ$\overrightarrow{PA}•\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z滿足:iz=i+z,則z=( 。
A.1+iB.1-iC.$\frac{1+i}{2}$D.$\frac{1-i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.集合{a,b}的所有子集是:{a},,∅,{a,b}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sinx-$\frac{x}{2}$.當(dāng)0<x<1時(shí),不等式f(x)•log2(x-2m+$\frac{5}{4}$)>0恒成立.則實(shí)數(shù)m得到取值范圍是(-∞,-2].

查看答案和解析>>

同步練習(xí)冊答案