直線x=2與雙曲線C:
x2
4
-y2=1的漸近線交于A,B兩點(diǎn),P為雙曲線C上的一點(diǎn),且
OP
=a
OA
+b
OB
(a,b∈R+,O為坐標(biāo)原點(diǎn)),則
1
a
+
1
b
的最小值為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)P(x,y),利用
OP
=a
OA
+b
OB
,可得x=2a+2b,y=a-b,代入雙曲線方程,可得4ab=1,再利用基本不等式,即可求出
1
a
+
1
b
的最小值.
解答: 解:由題意,A(2,1),B(2,-1),
設(shè)P(x,y),則
OP
=a
OA
+b
OB
,
∴x=2a+2b,y=a-b
∵P為雙曲線C上的任意一點(diǎn),
(2a+2b)2
4
-(a-b)2=1
∴4ab=1
1
a
+
1
b
≥2
1
ab
=4,
1
a
+
1
b
的最小值為4.
故答案為:4.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,開(kāi)車(chē)基本不等式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱椎P-ABCD中,PD⊥平面ABCD,四邊形ABCD是邊長(zhǎng)為2的菱形,∠ABC=
3
,PD=2
3
,E是PB的中點(diǎn).
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校要用甲、乙、丙三輛汽車(chē)從新校區(qū)把教職工接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為
1
4
,不堵車(chē)的概率為
3
4
;汽車(chē)走公路②堵車(chē)的概率為
1
3
,不堵車(chē)的概率為
2
3
.若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他 原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響.
(Ⅰ)求三輛汽車(chē)中恰有一輛汽車(chē)被堵的概率;
(Ⅱ)求三輛汽車(chē)中被堵車(chē)輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,內(nèi)角∠A,∠B,∠C的對(duì)邊分別是a,b,c,acosB+bsinA=c,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知四面體A-BCD的外接球的球心O在線段BD上,且AO⊥平面BCD,BC=
3
2
BD,若四面體A-BCD的體積為
3
2
,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an=n,則數(shù)列{
1
Sn
}前15項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的函數(shù)個(gè)數(shù)是
 
(只填數(shù)字)
①f(x)=x2
②f(x)=e-x
③f(x)=lnx
④f(x)=x+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)0≤x≤2時(shí),函數(shù)y=4x-
1
2
-a•2x+
a2
2
+1
的最大值為3,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=6,|
b
|=3,
a
b
=-12,則向量
a
在向量
b
方向上的投影是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案