分析 (1)左焦點F($-2\sqrt{2}$,0),直線AB方程為:$y=\frac{\sqrt{3}}{3}(x+2\sqrt{2})$,設(shè)A(x1,y1),B(x2,y2).與橢圓方程聯(lián)立化為$4{x^2}+12\sqrt{2}x+15=0$,再利用弦長公式即可得出.
(2)利用點到直線的距離公式可得:點O到直線AB的距離d.利用S=$\frac{1}{2}d|AB|$即可得出.
解答 解:(1)左焦點F($-2\sqrt{2}$,0),
直線AB方程為:$y=\frac{\sqrt{3}}{3}(x+2\sqrt{2})$,設(shè)A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}(x+2\sqrt{2})}\\{{x}^{2}+9{y}^{2}=9}\end{array}\right.$,化為$4{x^2}+12\sqrt{2}x+15=0$,
∴x1+x2=$-3\sqrt{2}$,x1x2=$\frac{15}{4}$.
∴|AB|=$\sqrt{[1+(\frac{\sqrt{3}}{3})^{2}][({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{\frac{4}{3}×[(3\sqrt{2})^{2}-4×\frac{15}{4}]}$=2.
(2)∵點O到直線AB的距離d=$\frac{\frac{\sqrt{3}}{3}×2\sqrt{2}}{\sqrt{(\frac{\sqrt{3}}{3})^{2}+{1}^{2}}}$=$\sqrt{2}$.
∴S=$\frac{1}{2}d|AB|$=$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$.
點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、三角形面積計算公式、弦長公式、點到直線的距離公式,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com