分析 利用等差中項(xiàng)即得$\frac{{a}_{4}}{_{4}}$=$\frac{{S}_{7}}{{T}_{7}}$,進(jìn)而計(jì)算即得結(jié)論.
解答 解:∵數(shù)列{an}、{bn}均為等差數(shù)列,
∴S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=7a4,T7=$\frac{7(_{1}+_{7})}{2}$=7b4,
又∵$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$=$\frac{2{a}_{4}}{2_{4}}$=$\frac{{a}_{4}}{_{4}}$,$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{{a}_{4}}{2_{4}}$=$\frac{1}{2}$•$\frac{{a}_{4}}{_{4}}$,
∴$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$+$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{3}{2}$•$\frac{{a}_{4}}{_{4}}$,
∵$\frac{S_n}{T_n}$=$\frac{2n+3}{3n-1}$,
∴$\frac{{a}_{4}}{_{4}}$=$\frac{{S}_{7}}{{T}_{7}}$=$\frac{2×7+3}{3×7-1}$=$\frac{17}{20}$,
∴$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$+$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{3}{2}$•$\frac{{a}_{4}}{_{4}}$=$\frac{3}{2}$•$\frac{17}{20}$=$\frac{51}{40}$,
故答案為:$\frac{51}{40}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的簡(jiǎn)單性質(zhì),利用等差中項(xiàng)是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-6,-\frac{3}{2}}]$ | B. | [-2,0] | C. | $[{-2,-\frac{3}{2}}]$ | D. | (-∞,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 2 | D. | $\frac{2}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com