1.已知a3+a-3=a+a-1,則a2等于( 。
A.1B.3$+\sqrt{5}$C.2$+\sqrt{3}$D.3$+\sqrt{13}$

分析 根據(jù)立方和公式進行因式分解與化簡,再利用完全平方公式,即可求出a2的值.

解答 解:a3+a-3=(a+a-1)(a2-a•a-1+a-2)=a+a-1,
所以a2-1+a-2=1,
即a2-2+a-2=0,
所以a4-2a2+1=0,
即(a2-1)2=0,
解得a2=1.
故選:A.

點評 本題考查了立方和公式與完全平方公式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+y-2≥0}\end{array}\right.$,則目標函數(shù)t=x-2y的最大值為( 。
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在區(qū)間(0,1)內(nèi)任取一個數(shù)a,能使方程x2+2ax+$\frac{1}{2}$=0有兩個不相等的實數(shù)根的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)y=3x的圖象經(jīng)過點(-1,y0),那么y0等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)y=-sin($\frac{π}{3}$-x)的周期變?yōu)樵瓉淼?倍,再將新函數(shù)圖象向右平移$\frac{π}{6}$個單位長度,得到y(tǒng)=f(x)的圖象,則函數(shù)y=f(x)的解析式為y=sin($\frac{1}{2}$x-$\frac{5π}{12}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(cosθ,-1),$\overrightarrow$=(sinθ,2),當$\overrightarrow{a}$∥$\overrightarrow$,求3cos2θ+2sin2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在正方體ABCD-A1B1C1D1中.

(Ⅰ)如圖(1)求CD1與平面A1B1CD所成的角
(Ⅱ)如圖(2)求證:A1C∥平面AED1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD上的點,且DE=λa(0<λ≤1).
(Ⅰ)求證:對任意的λ∈(0,1),都有AC⊥BE;
(Ⅱ)若直線DE與平面ACE所成角大小為60°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)與其圖象相符的是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案