18.已知p:{x|x2-8x-20≤0},q:{x|$\frac{{x-({m+1})}}{{x+({m-1})}}$≤0,m>0},若¬p是¬q的必要而不充分條件,則實(shí)數(shù)m的取值范圍是[9,+∞).

分析 分別求出關(guān)于p,q的不等式,根據(jù)集合的包含關(guān)系得到關(guān)于m的不等式組,解出即可.

解答 解:由x|x2-8x-20≤0,解得:-2≤x≤10,
故p:-2≤x≤10;
由$\frac{{x-({m+1})}}{{x+({m-1})}}$≤0,m>0,解得:1-m<x≤1+m,
故q:1-m<x≤1+m,
若¬p是¬q的必要而不充分條件,
即q是p的必要不充分條件,
即[-2,10]?(1-m,1+m],
故$\left\{\begin{array}{l}{1-m<-2}\\{1+m≥10}\end{array}\right.$,解得:m≥9,
故答案為:m∈[9,+∞).

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系以及解不等式問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l1:2x+4y-1=0,直線l2經(jīng)過點(diǎn)(1,-2),求滿足下列條件的直線l2的方程:
(1)l1∥l2;             (2)l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC,若存在△A1B1C1,滿足$\frac{cosA}{{sin{A_1}}}=\frac{cosB}{{sin{B_1}}}=\frac{cosC}{{sin{C_1}}}=1$,則稱△A1B1C1是△ABC的一個(gè)“友好”三角形.在滿足下述條件的三角形中,存在“友好”三角形的是②:(請(qǐng)寫出符合要求的條件的序號(hào))
①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°; ③A=75°,B=75°,C=30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系中,有△ABC,且A(-3,0),B(3,0),頂點(diǎn)C到點(diǎn)A與點(diǎn)B的距離之差為4,則頂點(diǎn)C的軌跡方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在下列結(jié)論中,正確結(jié)論的序號(hào)為①②④.
①函數(shù)y=sin(kπ-x)(k∈Z)為奇函數(shù);
②若tan(π-x)=2,則${cos^2}x=\frac{1}{5}$;
③函數(shù)$y=tan({2x+\frac{π}{6}})$的圖象關(guān)于點(diǎn)$({\frac{π}{12},0})$對(duì)稱;
④函數(shù)$y=cos({2x+\frac{π}{3}})$的圖象的一條對(duì)稱軸為$x=-\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐S-ABCD中,底面ABCD為平行四邊形,∠DBA=60°,∠SAD=30°,AD=SD=2$\sqrt{3}$,BA=BS=4.
(Ⅰ)證明:BD⊥平面SAD;
(Ⅱ)求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果實(shí)數(shù)$\left\{\begin{array}{l}{2x-y-6≤0}\\{x+y-3≥0}\\{y≤3}\end{array}\right.$,滿足不等式組b=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$|sinx|dx,則目標(biāo)函數(shù)z=x+by的最大值是( 。
A.3B.$\frac{21}{2}$C.6D.與b值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.半徑分別為5,6的兩個(gè)圓相交于A,B兩點(diǎn),AB=8,且兩個(gè)圓所在平面相互垂直,則它們的圓心距為$\sqrt{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知“a∈R,則“a=2”是“復(fù)數(shù)z=(a2-a-2)+(a+1)i(i為虛數(shù)單位)為純虛數(shù)”的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案