20.在10與100之間插入50個(gè)數(shù),使它們?nèi)w構(gòu)成等差數(shù)列,求插入的50個(gè)數(shù)中整數(shù)的和.

分析 求出an=10+(n-1)•$\frac{30}{17}$,欲使an是整數(shù),n可取1,18,35,52.從而插入的整數(shù)為a18a35這兩項(xiàng),由此能求出結(jié)果.

解答 解:設(shè)所成數(shù)列公差為d,則有10+51d=100,d=$\frac{30}{17}$,
an=10+(n-1)•$\frac{30}{17}$,欲使an是整數(shù),則n-1必為17的倍數(shù),且0≤n-1≤50,
即n-1可取0,17,34,51,則n可取1,18,35,52.
∴插入的整數(shù)為a18a35這兩項(xiàng),
它們的和是a18+a35=a1+17d+a1+34d=40+70=110.

點(diǎn)評(píng) 本題考查等差數(shù)列中整數(shù)的和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2cos2x+sin2x-4cosx.
(1)求f($\frac{π}{3}$)的值;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$的x,y使得不等式2x+y+m>0恒成立,則m的取值范圍是( 。
A.m<-3B.m>3C.m<3D.m>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知c=2,C=$\frac{π}{3}$,S△ABC=$\sqrt{3}$,則△ABC的周長(zhǎng)為( 。
A.6B.5C.4D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.求值:$\frac{sin\frac{7π}{6}•cos\frac{11π}{3}}{cot(-\frac{π}{3})}$=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求證:
(1)$\frac{sinα-cosα+1}{sinα+cosα-1}=\frac{1+sinα}{cosα}$;
(2)2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)互相垂直的單位向量,且$\overrightarrow{a}$=-(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),$\overrightarrow$=$\overrightarrow{{e}_{1}}$-λ$\overrightarrow{{e}_{2}}$
(1)若$\overrightarrow{a}$∥$\overrightarrow$,則λ=-$\frac{1}{2}$平行時(shí)反向(填同向或反向)
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,則λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知2log2${\;}_{\frac{1}{2}}$x+5log${\;}_{\frac{1}{2}}$x一3<0,求函數(shù)f(x)=(log2$\frac{x}{8}$))•(log${\;}_{\frac{1}{2}}$$\frac{4}{x}$)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知G,N,P在△ABC所在平面內(nèi),a,b,c分別為角A,B,C所對(duì)的邊,且分別滿足$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,sin2A•$\overrightarrow{NA}$+sin2B•$\overrightarrow{NB}$+sin2C•$\overrightarrow{NC}$=$\overrightarrow{0}$,a$\overrightarrow{PA}$+b$\overrightarrow{PB}$+c$\overrightarrow{PC}$=$\overrightarrow 0$,則點(diǎn)G,N,P依次是△ABC的( 。
A.重心,外心,內(nèi)心B.重心,垂心,內(nèi)心C.重心,垂心,外心D.內(nèi)心,外心,重心

查看答案和解析>>

同步練習(xí)冊(cè)答案