9.下列命題的說法正確的序號是①②③④.
①命題“?x∈R,x2-x+1≥$\frac{3}{4}$”的否定是“?x02-x0+1<$\frac{3}{4}$”;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
③命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”;
④若命題“非p”與命題“p或q”都是真命題,那么命題q一定是真命題.

分析 ①利用命題的否定的定義即可判斷出正誤;
②利用逆否命題的定義即可判斷出正誤;
③利用否命題的定義即可判斷出正誤;
④利用復(fù)合命題的真假判定方法定即可判斷出正誤.

解答 解:①命題“?x∈R,x2-x+1≥$\frac{3}{4}$”的否定是“?x02-x0+1<$\frac{3}{4}$”,正確;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”,正確;
③命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”,正確;
④若命題“非p”與命題“p或q”都是真命題,那么命題q一定是真命題,正確.
綜上可得:正確命題的序號是①②③④.
故答案為:①②③④.

點評 本題考查了簡易邏輯的判定方法,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{3x+2y≤15}\end{array}\right.$,則z=7x+2y的最大值是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要證明$\sqrt{3}$+$\sqrt{7}$<2+$\sqrt{6}$所選擇的方法有以下幾種,其中合理的是( 。
A.綜合法B.分析法C.類比法D.歸納法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,若(2a-c)tanC=ctanB,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.銷售甲,乙兩種商品所得到利潤與投入資金x(萬元)的關(guān)系分別為f(x)=m$\sqrt{x+1}+a$,g(x)=bx(其中m,a,b∈R),函數(shù)f(x),g(x)對應(yīng)的曲線C1,C2,如圖所示.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲,乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個等比數(shù)列的第3項和第4項分別是12和18,則它的第1項與第2項的和為( 。
A.$\frac{40}{3}$B.$\frac{16}{3}$C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,A、B、C所對的邊分別是a、b、c,若$\overrightarrow{m}$=(b,3a),$\overrightarrow{n}$=(c,b),且$\overrightarrow{m}$∥$\overrightarrow{n}$,C-A=$\frac{π}{2}$,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知a2-(b2-c2)=(2-$\sqrt{3}$)bc,sinA•sinB=cos2$\frac{C}{2}$,
(1)求角A,角B;
(2)求sinB•sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)Z滿足|Z+4|=|Z+4i|且Z+$\frac{14-Z}{Z-1}$<0,求$\overline{Z}$.

查看答案和解析>>

同步練習(xí)冊答案