19.已知復數(shù)Z滿足|Z+4|=|Z+4i|且Z+$\frac{14-Z}{Z-1}$<0,求$\overline{Z}$.

分析 利用兩個獨立條件采用待定系數(shù)法確定z.然后求解$\overline{z}$

解答 解:設z=x+yi(x,y∈R),復數(shù)Z滿足|Z+4|=|Z+4i|,可得y=x.則z=x+xi,
∵z+$\frac{14-Z}{Z-1}$<0∴z+$\frac{14-Z}{Z-1}$=x+xi+$\frac{14-x-xi}{x-1+xi}$=x+xi+$\frac{(14-x-xi)(x-1-xi)}{(x-1+xi)(x-1-xi)}$=x+xi+$\frac{15x-14-2{x}^{2}-13xi}{{(x-1)}^{2}+{x}^{2}}$
=x+$\frac{15x-14-2{x}^{2}}{{(x-1)}^{2}+{x}^{2}}$+$\frac{{x(x-1)}^{2}+{x}^{3}-13x}{{(x-1)}^{2}+{x}^{2}}i$.
∵Z+$\frac{14-Z}{Z-1}$<0,
∴$\left\{\begin{array}{l}{x(x-1)}^{2}+{x}^{3}-13x=0\\ x+\frac{15x-14-2{x}^{2}}{{(x-1)}^{2}+{x}^{2}}<0\end{array}\right.$
解得x=0或x=3或x=-2,經檢驗可知x=0,x=-2滿足題意.
綜上所述故$\overline{Z}$=0或$\overline{Z}$=-2+2i.

點評 本題主要考查熟練的運用復數(shù)的代數(shù)形式的混合運算,共軛復數(shù)的性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.下列命題的說法正確的序號是①②③④.
①命題“?x∈R,x2-x+1≥$\frac{3}{4}$”的否定是“?x02-x0+1<$\frac{3}{4}$”;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
③命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”;
④若命題“非p”與命題“p或q”都是真命題,那么命題q一定是真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求函數(shù)f(x)=x2-4|x|+3的單調區(qū)間并作出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求函數(shù)y=$\sqrt{2}$sinx,x∈($\frac{π}{4}$,$\frac{5π}{4}$)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.化簡:
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x);
(5)sin164°sin224°+sin254°sin314°;
(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ);
(7)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(8)tan$\frac{5π}{4}$+tan$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.圓x2+y2=9與圓(x-1)2+(y+1)2=16的位置關系是(  )
A.相交B.內切C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.與直線x+2y-4=0在x軸上的截距相同,與直線xtan$\frac{2π}{3}$+y-4=0的傾斜角相同的直線方程為( 。
A.$\sqrt{3}$x-y-4=0B.$\sqrt{3}$x-y-4$\sqrt{3}$=0C.$\sqrt{3}$x+y-4=0D.$\sqrt{3}$x+y-4$\sqrt{3}$=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足an+1=2bn,bn+1=an+2,a1=2,b1=4.
(1)求a2及b3的值;
(2)求證:$\frac{{a}_{n+2}+4}{{a}_{n}+4}$=$\frac{_{n+2}+2}{_{n}+2}$;
(3)求數(shù)列{an-bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知拋物線C:y2=4x,經點K(-2,0)的直線l與C相交于A、B兩點,點A關于x軸的對稱點為D,且直線BD與x軸相交于點P(m,0),求m的值.

查看答案和解析>>

同步練習冊答案