11.偶函數(shù)f(x)的定義域?yàn)镽,若f(x+2)為奇函數(shù),且f(1)=1,則f(89)+f(90)為(  )
A.-2B.-1C.0D.1

分析 根據(jù)函數(shù)的奇偶性的性質(zhì),得到f(x+8)=f(x),即可得到結(jié)論.

解答 解:∵f(x+2)為奇函數(shù),
∴f(-x+2)=-f(x+2),
∵f(x)是偶函數(shù),
∴f(-x+2)=-f(x+2)=f(x-2),
即-f(x+4)=f(x),
則f(x+4)=-f(x),f(x+8)=-f(x+4)=f(x),
即函數(shù)f(x)是周期為8的周期函數(shù),
則f(89)=f(88+1)=f(1)=1,
f(90)=f(88+2)=f(2),
由-f(x+4)=f(x),
得當(dāng)x=-2時(shí),-f(2)=f(-2)=f(2),
則f(2)=0,
故f(89)+f(90)=0+1=1,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,利用函數(shù)奇偶性的性質(zhì),得到函數(shù)的對(duì)稱軸是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面為直角梯形,且∠BAD=∠ADC=90°,E,F(xiàn),G分別為PA,PB,PC的中點(diǎn),直線PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若點(diǎn)M∈平面EFG,且與點(diǎn)E不重合,判斷直線EM與平面ABCD的關(guān)系,并說(shuō)明理由;
(2)若PB=4,求四棱錐C-ABFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)當(dāng)a=$\sqrt{7}$,b=2時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為2,焦點(diǎn)到漸近線的距離為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.圓C1:(x-1)2+(y-1)2=1關(guān)于直線x+y=0對(duì)稱的圓C2的方程為( 。
A.(x+1)2+(y-1)2=1B.(x-1)2+(y+1)2=1
C.(x+1)2+(y+1)2=1D.(x+1)2+(y-1)2=1或(x-1)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)的定義在(0,+∞)的函數(shù),對(duì)任意兩個(gè)不相等的正數(shù)x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,記a=$\frac{f({3}^{0.2})}{{3}^{0.2}}$,b=$\frac{f({0.3}^{2})}{{0.3}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,則(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知關(guān)于x的方程:x2+2(a-1)x+2a+6=0.
(Ⅰ)若該方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若該方程有兩個(gè)不等實(shí)數(shù)根,且這兩個(gè)根都大于1,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)f(x)=x2+2(a-1)x+2a+6,x∈[-1,1],記此函數(shù)的最大值為M(a),最小值為N(a),求M(a),N(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a=tan$\frac{3}{4}$π,b=cos$\frac{π}{4}$,c=(1+sin$\frac{6}{5}$π)0,則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,AP=AD=1,點(diǎn)E在PC上,且PE=$\frac{1}{2}$EC,點(diǎn)F是PD的中點(diǎn).
(1)求證:PC⊥AF;
(2)求三棱錐A-CEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案