分析 (Ⅰ)由橢圓離心率為$\frac{{\sqrt{3}}}{2}$,右頂點(diǎn)A(2,0),列出方程組求出a,b,由此能求出橢圓C的方程.
(Ⅱ)由題意知直線l斜率不為0,可設(shè)直線l方程為$x=my+\frac{3}{2}$,與橢圓聯(lián)立,得$({m^2}+4){y^2}+3my-\frac{7}{4}=0$,由此利用根的判別式、韋達(dá)定理,結(jié)合已知條件能證明k1k2為定值,并能求出此定值.
解答 解:(Ⅰ)∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,右頂點(diǎn)A(2,0),
∴由題意得$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{3}}}{2}\\ a=2\end{array}\right.$,解得$\left\{\begin{array}{l}a=2.\\ b=1\\ c=\sqrt{3}.\end{array}\right.$
∴橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$.…(4分)
證明:(Ⅱ)由題意知直線l斜率不為0,可設(shè)直線l方程為$x=my+\frac{3}{2}$,
與$\frac{x^2}{4}+{y^2}=1$聯(lián)立,得$({m^2}+4){y^2}+3my-\frac{7}{4}=0$,
△=9m2+7(m2+4)>0,設(shè)B(x1,y1),D(x2,y2),
則${y_1}+{y_2}=\frac{-3m}{{{m^2}+4}},{y_1}{y_2}=\frac{{-\frac{7}{4}}}{{{m^2}+4}}$…(8分)
${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-\frac{1}{2})(m{y_2}-\frac{1}{2})}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-\frac{1}{2}m({y_1}+{y_2})+\frac{1}{4}}}$
=$\frac{{-\frac{7}{4}}}{{-\frac{7}{4}{m^2}+\frac{3}{2}{m^2}+\frac{1}{4}({m^2}+4)}}=-\frac{7}{4}$.
∴k1k2為定值,定值為$-\frac{7}{4}$…(12分)
點(diǎn)評(píng) 本題考查橢圓方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)、根的判別式、韋達(dá)定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45 | B. | 171 | C. | 182 | D. | 192 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com