精英家教網 > 高中數學 > 題目詳情
4.在等比數列{an}中,已知a1=1,a3=2a2,則該數列前6項和S6=(  )
A.31B.63C.127D.176

分析 由等比數列通項公式先求出公比,由此能求出該數列前6項和S6

解答 解:∵在等比數列{an}中,a1=1,a3=2a2,
∴q2=2q,解得q=2,或q=0(舍),
∴該數列前6項和S6=$\frac{1-{2}^{6}}{1-2}$=63.
故選:B.

點評 本題考查等比數列的前6項和的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC的中點,求AD與平面PAC所成的角的正弦值的大。

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.橢圓$\frac{x^2}{m}+\frac{y^2}{4}$=1的焦距為2,則m的值是( 。
A.6或2B.5C.1或9D.3或5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.某錐體的三視圖如圖所示,該棱錐的體積是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{7\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,在正三棱柱ABC-A1B1C1中,點D在邊BC上,AD⊥C1D.
(1)求證:AD⊥平面BCC1B1;
(2)如果點E是C1B1的中點,求證:A1E∥平面ADC1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,設該幾何體外接球為O,則過球O的一條半徑中點且與半徑垂直的圓的截面面積為( 。
A.$\frac{9}{4}$πB.$\frac{9}{16}$πC.$\frac{27}{16}$πD.$\frac{27}{32}$π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知圓C:x2+y2=4.
(Ⅰ)直線l過點P(1,2),且與圓C相切,求直線l的方程;
(Ⅱ)過圓C上一動點M作平行于y軸的直線m,設m與x軸的交點為N,若向量$\overrightarrow{OQ}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求動點Q的軌跡方程.
(Ⅲ) 若點R(1,0),在(Ⅱ)的條件下,求|$\overrightarrow{PQ}$|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖所示,圓O的兩弦AB和CD交于點E,作EF∥CB,并且交AD的延長線于點F,FG切圓O于點G.
(Ⅰ)求證:△DEF∽△EFA;
(Ⅱ)如果FG=1,求EF的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若f(x)-2f($\frac{x}{2}$)≤k恒成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案