8.下表是一個容量為60的樣本(60名學(xué)生的數(shù)學(xué)考試成績,成績?yōu)?-100的整數(shù))的頻率分布表,則表中頻率a的值為0.35.
分組0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5
頻數(shù)3612
頻率a0.3

分析 根據(jù)頻率=$\frac{頻數(shù)}{樣本容量}$以及頻率和為1,即可求出a的值.

解答 解:根據(jù)題意,填寫表中數(shù)據(jù),如下;
成績在0.5~20.5內(nèi)的頻率是$\frac{3}{60}$=0.05,
成績在20.5~40.5內(nèi)的頻率是$\frac{6}{60}$=0.10,
成績在40.5~60.5內(nèi)的頻率是$\frac{12}{60}$=0.20,
∴成績在60.5~80.5內(nèi)的頻率是
1-(0.05+0.10+0.20+0.30)=0.35;
∴a的值是0.35.
故答案為:0.35.

點評 本題考查了頻率、頻數(shù)與樣本容量的計算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等比數(shù)列{an}的各項均為正數(shù),公比0<q<1,設(shè)P=$\frac{{a}_{3}+{a}_{9}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,則a3,a9,P與Q的大小關(guān)系是(  )
A.a3>P>Q>a9B.a3>Q>P>a9C.a9>P>a3>QD.P>Q>a3>a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)z=(1-i)(m+2i)(i為虛數(shù)單位)是純虛數(shù),則實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若命題?x∈{2,3},x2-4>0,則命題¬p為?x∈{2,3},x2-4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖是一個算法的偽代碼,運行后輸出的n值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x).
(1)求F(x)的定義域;
(2)若a,b∈(0,1),猜想F(a)+F(b)與F($\frac{a+b}{1+ab}$)之間的關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.lg0.01+log216=2;${[{(-2)^6}]^{\frac{1}{2}}}-{(\frac{1}{4})^{-\frac{1}{2}}}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}為等差數(shù)列,a5=14,a7=20;數(shù)列{bn}的前n項和為Sn,且bn=2-2Sn
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)求證:a1b1+a2b2+…+anbn<$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案